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Investigations of visual crowding, where a target is difficult to identify because of flanking elements, has
largely used a theoretical perspective based on local interactions where flanking elements pool with or
substitute for properties of the target. This successful theoretical approach has motivated a wide variety
of empirical investigations to identify mechanisms that cause crowding, and it has suggested practical
applications to mitigate crowding effects. However, this theoretical approach has been unable to account
for a parallel set of findings that crowding is influenced by long-range perceptual grouping effects. When
the target and flankers are perceived as part of separate visual groups, crowding tends to be quite weak.
Here, we describe how theoretical mechanisms for grouping and segmentation in cortical neural circuits
can account for a wide variety of these long-range grouping effects. Building on previous work, we
explain how crowding occurs in the model and explain how grouping in the model involves connected
boundary signals that represent a key aspect of visual information. We then introduce new circuits that
allow nonspecific top-down selection signals to flow along connected boundaries or within a surface
contained by boundaries and thereby induce a segmentation that can separate the visual information
corresponding to the flankers from the visual information corresponding to the target. When such
segmentation occurs, crowding is shown to be weak. We compare the model’s behavior to 5 sets of
experimental findings on visual crowding and show that the model does a good job explaining the key
empirical findings.
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In visual crowding, perception of a target deteriorates when
nearby elements are presented (Flom, Heath, & Takahashi, 1963;
Levi, 2008; Pelli, Palomares, & Majaj, 2004; Strasburger, Rent-
schler, & Jüttner, 2011; Whitney & Levi, 2011). In addition to

being a phenomenon that enables scientists to study the properties
of perception and recognition, crowding has practical implications
for topics such as reading (Legge, 2007; Pelli et al., 2007), dys-
lexia (Doron, Manassi, Herzog, & Ahissar, 2015; Gori & Facoetti,
2015), and schizophrenia (Roinishvili et al., 2015). Thus, a model
of crowding has potential benefits for both basic and applied
sciences. In line with feedforward hierarchical models of object
recognition (DiCarlo, Zoccolan, & Rust, 2012; Hubel & Wiesel,
1962; Riesenhuber & Poggio, 1999; Serre, Oliva, & Poggio, 2007;
Thorpe, Delorme, & Van Rullen, 2001), crowding is often ex-
plained by pooling or substitution models. In pooling models,
neurons with large receptive fields in higher visual areas pool
information from lower level neurons with smaller receptive fields
(Freeman, Chakravarthi, & Pelli, 2012; Freeman & Simoncelli,
2011; Greenwood, Bex, & Dakin, 2010; Parkes, Lund, Angelucci,
Solomon, & Morgan, 2001; Van Den Berg, Roerdink, & Corne-
lissen, 2010; Wilkinson, Wilson, & Ellemberg, 1997). Because of
such pooling, target and flanker signals are combined, thereby
impairing target identification. In substitution models, crowding is
thought to occur because features of the flankers (or flankers in
their entirety) are confused with the target (Ester, Klee, & Awh,
2014; Ester, Zilber, & Serences, 2015; Huckauf & Heller, 2002;
Krumhansl & Thomas, 1977; Strasburger, Harvey, & Rentschler,
1991; Zhang, Zhang, Liu, & Yu, 2012), which leads to target
misidentification.
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These standard perspectives on crowding share three common
assumptions. The first assumption is that when observers are asked
to identify the target, the flankers are essentially treated as noise in
the visual system and, hence, increasing flanker strength (by size
or number) leads to a predicted increase in crowding strength
(Parkes, Lund, Angelucci, Solomon, & Morgan, 2001; Wilkinson,
Wilson, & Ellemberg, 1997). The second assumption is that the
effect of the flankers on the target reflects local interactions. This
assumption is based on the empirical observation that crowding
occurs only within a spatial window with the size of half the target
eccentricity (Bouma’s law); and flankers presented outside this
window are presumed to not affect crowding strength (Bouma,
1970; Pelli, 2008; Pelli et al., 2004; Pelli & Tillman, 2008). The
third assumption is that crowding occurs only between similar
features; for example when the target and flankers have the same
color (Kooi, Toet, Tripathy, & Levi, 1994; Põder, 2007), orienta-
tion (Andriessen & Bouma, 1976), shape (Kooi et al., 1994; Nazir,
1992), spatial frequency (Chung, Levi, & Legge, 2001), or global
configuration (e.g., faces; Farzin, Rivera, & Whitney, 2009; Louie,
Bressler, & Whitney, 2007).

Following the theoretical perspective based on these assump-
tions, much crowding research has focused on low level properties
such as contrast or spacing and has typically presented only single
flankers next to the target (e.g., Levi, Hariharan, & Klein, 2002;
Levi, Klein, & Hariharan, 2002; Pelli et al., 2004; Strasburger et
al., 1991; Toet & Levi, 1992). The data accumulated from these
studies were commonly interpreted within a hierarchical frame-
work, where the flanker influences identification of the target by
interference with a template matching process (Levi, Klein, &
Carney, 2000; Mareschal, Morgan, & Solomon, 2008). Some
alternative models interpret crowding effects at the population
level (Chaney, Fischer, & Whitney, 2014; Harrison & Bex, 2015;
Van den Berg, et al., 2010), but these calculations, although using
very different mechanisms, largely reflect the same kind of com-
putational processes. Encouragingly, the effect of low level prop-
erties on crowding are readily explained by the standard views and
models.

However, some empirical findings in the last decade have
shown that the assumptions of the standard perspective do not
always hold true and thereby cast doubts about the completeness of
standard views of crowding and their corresponding models. In
many of these experiments the observer performed a vernier judg-
ment task, by reporting the offset direction of two slightly offset
vertical lines. The threshold offset magnitude indicates the sensi-
tivity of the observer to the target vernier, and crowding produces
larger thresholds. The findings from these studies are summarized
as five key properties of crowding.

1. Levi and Carney (2009); Malania, Herzog, and Wes-
theimer (2007); and Manassi, Sayim, and Herzog (2012)
showed that “bigger can be better.” Crowding was strong
when the vernier was flanked by lines with the same
length (e.g., see Figure 1, Condition 1), as vernier offset
thresholds strongly increased relative to a vernier in
isolation. However, crowding was weak when the target
was placed with short (e.g., see Figure 1, Condition 2) or
long (e.g., see Figure 1, Condition 3) flankers. Hence,
increasing flanker size (i.e., flanker energy) does not
always increase crowding. Additional studies found sim-

ilar results with Gabor (Saarela, Sayim, Westheimer, &
Herzog, 2009; Yeotikar, Khuu, Asper, & Suttle, 2011)
and letter stimuli (Saarela, Westheimer, & Herzog,
2010).

2. When increasing the number of equal-length flankers
from two to 16, crowding strength remained nearly con-
stant. In contrast, crowding strength decreased when in-
creasing the number of smaller or longer flanking lines
(Malania et al., 2007; Manassi et al., 2012; for similar
results see Banks, Larson, & Prinzmetal, 1979; Põder,
2006; Wolford & Chambers, 1983). Again, stronger
flankers do not necessarily produce stronger crowding.

3. Manassi et al. (2012) and Sayim et al. (2010) showed that
crowding strength depends on the global configuration of
the stimulus. Using stimuli that had identical local char-

Stimuli BoundariesCondition

1

2

3

4

5

6

7

8

9

10

11

12

13

Figure 1. The types of stimuli used in crowding experiments to investi-
gate effects of perceptual organization, and the pattern of boundaries they
generate. Each boundary codes the local orientation of an edge (green for
horizontal, red for vertical, blue for either oblique). The intensity of the
color at each point represents a frequency count of the number of model
spikes from bipole neurons during a 50-ms window. Notice the generation
of “illusory” horizontal boundaries that connect disparate stimulus ele-
ments. The boundaries correspond to perceptual grouping, and a set of
connected boundaries forms a group that guides a segmentation process.
See the online article for the color version of this figure.
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acteristics (e.g., a vertical line on either side of a target
vernier), they found that target identification was sub-
stantially better if the vertical line flankers were part of a
flanking rectangle (e.g., see Figure 1, Condition 10).
Hence, flankers do not seem to be treated as mere noise
by the visual system, rather their configural properties
strongly matter. In these studies, it seemed to be critical
that the flanking stimuli formed a coherent Gestalt to
reduce crowding effects.

4. Using stimuli that demonstrated an “uncrowding” effect,
Manassi, Sayim, and Herzog (2013) showed that ele-
ments outside Bouma’s window can strongly influence
crowding strength. For example, when a vernier was
embedded in an outline square that is within Bouma’s
window, vernier offset discrimination deteriorated: a
classic crowding effect. However, crowding decreased
when additional flanking squares were presented (e.g.,
see Figure 1, Condition 4). Importantly, crowding de-
creased even when the additional flanking squares were
presented outside Bouma’s window. Hence, some crowd-
ing effects are the result of global interactions across
large regions of the visual field (for other global effects
see Harrison, Retell, et al., 2013; Harrison, Mattingley, &
Remington, 2013; Manassi, Hermens, Francis, & Herzog,
2015; Manassi et al., 2012; Rosen & Pelli, 2015; Sayim,
Manassi, & Herzog, 2014; Vickery, Shim, Chakravarthi,
Jiang, & Luedeman, 2009).

5. Further investigations into uncrowding revealed that high
level similarity strongly influences crowding effects (Ma-
nassi, Lonchampt, Clarke, & Herzog, 2016; Manassi et
al., 2013). For example, the uncrowding effects in 4)
nearly vanished when removing the horizontal lines of
flanking squares (e.g., see Figure 1, Condition 6). Hence,
uncrowding occurred with square-square interactions but
not with line-line interactions. In addition, strong crowd-
ing occurred if the target was surrounded by a square and
the other flankers were diamonds (e.g., see Figure 1,
Condition 7). Rotating those diamonds to be squares
produced uncrowding (e.g., see Figure 1, Condition 4).
The same results were found in the inverse conditions,
that is, with a central flanking diamond and flanking
diamonds/squares (e.g., see Figure 1, Conditions 8 and
9). Hence, target-flanker interactions are not only feature
specific and are more complicated than previously
thought.

These five sets of findings suggest that, contrary to standard
perspectives, crowding is strongly influenced by the perceptual
organization of the entire visual stimulus. A summary of the earlier
findings is that crowding is strong when the target groups with the
flankers; and crowding is weak when the target does not group
with the flankers (for reviews see Herzog & Manassi, 2015 and
Herzog, Sayim, Chicherov, & Manassi, 2015). More generally,
crowding strength has been shown to depend on several grouping
cues, including target-flanker similarity on various levels (low
level: Malania et al., 2007; Manassi et al., 2012; Yeotikar et al.,
2011; high level: Farzin et al., 2009; Ikeda, Watanabe, & Ca-

vanagh, 2013; Kimchi & Pirkner, 2015; Louie et al., 2007; Ma-
nassi et al., 2013;), good Gestalt (Manassi et al., 2012; Sayim et al.,
2010), regularity (Manassi et al., 2012; Rosen & Pelli, 2015;
Saarela et al., 2010), contour integration (Chakravarthi & Pelli,
2011; Livne & Sagi, 2007, 2010) and pattern completion (Manassi
et al., 2015; Hermens, Scharnowski, & Herzog, 2009). Consistent
with the grouping proposal, subjective ratings about the distinc-
tiveness of the target relative to the flankers—a measure of group-
ing—show good correlations with crowding strength (Malania et
al., 2007; Manassi et al., 2012; Saarela et al., 2009; Wolford &
Chambers, 1983). If perceptual grouping plays an important role in
crowding, then the standard interpretations of crowding (which
largely do not consider grouping effects) will be unable to fully
account for the properties of crowding or may invoke improper
mechanisms to account for psychophysical data (see Herzog &
Manassi, 2015; Herzog et al., 2015). Indeed, the standard inter-
pretations cannot explain how figural interactions between multi-
ple flanking squares (Manassi et al., 2013) can influence crowding
strength; nor can quantitative models that instantiate these standard
interpretations explain psychophysical data that explore the effects
of perceptual grouping on crowding. More generally, despite vig-
orous effort, there is currently no model that can account for the all
of the earlier effects of perceptual grouping on crowding (see also
Agaoglu & Chung, 2017; Clarke et al., 2014; Harrison & Bex,
2016; Manassi et al., 2015; Pachai, Doerig, & Herzog, 2016).

A promising approach, but one that is not considered here,
supposes that crowding effects are the result of how visual infor-
mation is represented among summary statistics of a visual scene
(e.g., Balas, Nakano, & Rosenholtz, 2009; Keshvari & Rosenholtz,
2016). Unlike the standard interpretations of crowding, a model
based on summary statistics considers many disparate elements of
a scene, and so in principle might be able to account for the earlier
effects. However, there are currently no model simulations dem-
onstrating that these kinds of models can account for these data
sets.

In this article we describe a neural network model of visual
perception that uses feedback to generate perceptual groupings
among responses to visual stimuli. A decision mechanism based on
template matching implements the classic ideas of crowding,
where the flankers reduce the sensitivity of the template compar-
ison mechanism. In a way that fundamentally differs from the
classic ideas of crowding, we show that the model’s groupings can
support a segmentation process whereby an observer uses top-
down signals to alter the cortical representation of visual informa-
tion in a way that sometimes enables isolation of the signals that
correspond to the target. Such isolation can free the target identi-
fication process from the crowding effects of the flankers. We
show through computer simulations that the model’s behavior is
quite similar to that of human observers for the same kinds of
stimuli. In particular, it accounts for the five effects summarized in
the preceding text.

Model Description

Figure 2 schematizes the stages of the model that are based on
previous work (Cao & Grossberg, 2005; Raizada & Grossberg,
2001), which is hypothesized to exist in areas V1 and V2 of visual
cortex. Because the model is an extension of previous work, not
every model property plays a fundamental role in explaining
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crowding effects. The present discussion will emphasize the model
properties (old and new) that are necessary to understand grouping,
segmentation, and crowding.

Grouping

The circuits schematized in Figure 2 correspond to previous
versions of the model, known as LAMINART because it explains
how visual information processing is performed using neural com-
putations among the laminar layers of visual cortex (Raizada &
Grossberg, 2001). Previous work has used this model to explain
properties of perceptual grouping, illusory contours, and texture
discrimination, among others (Bhatt, Carpenter, & Grossberg,
2007; Grossberg, 2014) by demonstrating how the visual cortex
represents oriented boundaries, which generalize contrast edges.
The computations in V1 are similar to those in V2, but at a smaller
spatial scale, so the present discussion will focus only on the V2
computations. The schematized V2 neurons represent oriented
boundaries (edges) at specific retinotopic locations. Input from V1
complex cells arrive in Layer 6 and Layer 4, which feed into a
circuit for lateral spatial grouping at Layer 2/3. A “bipole” neuron

in Layer 2/3 gathers input from neurons with similar orientation
preferences that are arranged along the direction of the preferred
orientation (Grossberg & Mingolla, 1985a); this pooling process is
similar to the “association field” used in other models (e.g., Field,
Hayes, & Hess, 1993). At each retinotopic position, a bipole
neuron receives excitatory signals from pooling neurons that
gather signals from opposite sides of the neuron’s retinotopic
position. By themselves, such excitatory signals would lead to a
run-away spreading of oriented boundaries across visual space. To
prevent this problem, the pooling neurons simultaneously send an
excitatory projection to an interneuron associated with the bipole
neuron and an inhibitory projection to another associated interneu-
ron (the black-filled circles in Figure 2). When active, either
interneuron inhibits the bipole neuron. The net effect of this circuit
is that when both pooling neurons send similarly strong signals, the
excitatory and inhibitory inputs to each interneuron are nearly
balanced and so the interneurons do not inhibit the bipole neuron.
In contrast, if one pooling neuron sends a much stronger signal
than the other pooling neuron, then one of the interneurons re-
ceives strong excitation and weak inhibition. This interneuron will
then inhibit the bipole neuron. The net effect is that the circuit
allows interpolation between boundary signals of appropriate ori-
entations and relative positions, but prevents extrapolation of
boundaries from an isolated boundary signal (Grossberg & Min-
golla, 1985a, 1985b; von der Heydt, Peterhans, & Baumgartner,
1984). As described subsequently, this property of boundary pro-
cessing plays an important role in perceptual grouping of visual
stimuli.

To demonstrate the network’s boundary grouping, Figure 1
shows a variety of stimuli that have been used in crowding exper-
iments and the pattern of responses from oriented boundaries
generated by the circuits in Figure 2. The images on the right show
a retinotopic representation of oriented boundary signals with a
colored pixel at each position where a bipole neuron sensitive to an
oriented boundary at that location is active. The intensity of the
color at each position indicates the number of spikes generated by
the model neuron over a 50-ms period. Different colors are used to
code different boundary orientations (red for vertical, green for
horizontal, and blue for either 45-degree oblique). The majority of
boundaries simply reflect the bottom-up luminance signals from
the stimulus, but close inspection reveals horizontal (green) bound-
aries that connect boundaries generated by physically separate
stimuli. For example, in the top image, the line ends of the flankers
and target are connected by horizontal boundaries. These illusory
contours are the result of the V2 pooling circuits in Figure 2.

Different boundary patterns appear for other types of stimuli.
For example, the stimulus in the second row of Figure 1 uses
flankers that are half the size of the target. The horizontal bound-
aries generated among the flankers on the left side of the target
fully connect the left side flankers but do not connect with the
target or the right side flankers. As described in detail subse-
quently, a set of connected boundaries corresponds to a perceptual
group. Thus, here the model representation indicates that there are
three distinct boundary groups: the left flankers, the right flankers,
and the target by itself. One sees a somewhat similar pattern for the
third row stimulus (long flankers), although the two sets of flank-
ers on either side become connected and thereby form one group
that is distinct from the target by itself. Similarly, the sets of squares
and diamonds for the stimuli in rows 4 through 9 of Figure 1 form

4

2/3

6

4

2/3

6

LGN

V1

V2
poolingpooling

Figure 2. A schematic of the model circuits for processing oriented
boundary information from a visual scene. Circles indicate model neurons,
with the central column of circles indicating neurons at a single retinotopic
position. Solid lines indicate excitation, and dashed lines indicate inhibi-
tion. The central top circle indicates a bipole neuron, which plays an
important role in perceptual grouping. See the online article for the color
version of this figure.
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boundary groups that are disconnected from the target, but the
boundaries for the flanking elements in these conditions group
together in different ways. The boundaries of flanking elements in
rows 10 through 12 group together and with the target’s boundar-
ies. The bottom stimulus is the target vernier by itself, which is
itself a fully connected group of boundaries, despite the small
offset of the line elements.

Template Matching and Crowding

The observer’s task in every crowding experiment considered
here is to judge the offset direction of a target vernier. Such a task
could conceivably be done with a variety of mechanisms, but we
opted for a template matching process that contrasts signals indi-
cating leftward and rightward shifted verniers. As schematized in
Figure 3 the templates are fairly large (which offers advantages if
the template is not centered directly on the target vernier and the
offset is large enough). Figure 3A demonstrates how templates for
a leftward target and a rightward target are positioned relative to
the boundaries generated by an isolated target.

Each template sums the neural responses within its coverage
area to produce, Vleft and Vright. The evidence that the vernier is
shifted to the right is then the contrast of these summed values:

Eright �
Vright � Vleft

100 � Vright � Vleft
(1)

where the value 100 avoids division by zero and scales the evi-
dence magnitude without changing relative order. Larger Eright

values correspond to more evidence that the vernier is shifted to
the right and correspond to a smaller offset threshold in behavioral
experiments. For a vernier by itself, Vright � 100 (due to the

dynamical nature of the model the value changes over time) and
Vleft � 0, so Eright � 0.5.

Consistent with classic perspectives, crowding occurs when
flanking elements contribute to the template calculation. Figure 3B
shows that signals from the equal sized flankers contribute to the
right shift template. The flankers also contribute to the left shift
template, which changes the ratio for the evidence calculation.
For the case shown in Figure 3B, Vright � 270 and Vleft � 180, so
Eright � 0.16. This value is relatively small compared with the 0.5
produced for an isolated vernier, and this decrease in Eright corre-
sponds to crowding that is introduced by the presence of the
flankers.

Because the target was always the same, we used one fixed set
of templates for all model simulations. Although mostly satisfac-
tory for the present purposes, we are not wedded to the details of
this template comparison process. Similar results would be pro-
duced by supposing that oriented detectors are used to discriminate
between a leftward or rightward shifted vernier (e.g., Klein &
Levi, 1985; Wilson, 1986) or by pooling across a population
distribution of detectors (Harrison & Bex, 2015).

Although our theoretical perspective is that grouping determines
crowding effects, boundary grouping by itself does not reduce
crowding in the template calculations. For example, Figure 3C
shows the template superimposed on the boundaries generated by
a target with long flankers. The boundaries corresponding to the
target do not connect with the boundaries corresponding to the
flanker, but the flanker signals do contribute to the template
calculations and would correspond to strong crowding (Manassi et
al., 2015). We argue in the next section that a segmentation process
is needed to capitalize on the boundary groupings in a way that
separates the signals of the target and flankers.

Segmentation for Boundary Groups

The main model development presented here is a segmentation
process that utilizes boundary groupings to alter the representation
of visual information and thereby modify crowding effects. This
segmentation process allows nonspecific, observer-guided, signals
to select and segment elements of a visual scene. At a conceptual
level, this selection process functions similar to the hypothesized
attentional gate that is common to many theories of visual percep-
tion (e.g., Reeves & Sperling, 1986). Figure 4 schematizes the
circuits that implement the segmentation computations. The box
labeled “Segmentation Layer 0” corresponds to the V2 boundary
processing circuit in Figure 2. The other segmentation layer boxes
indicate copies of the V2 circuits that are used to represent differ-
ent parts of a visual scene. In the context of the vernier discrimi-
nation task, the purpose of the segmentation process is to shift
boundaries of the flankers to different segmentation layers and
thereby isolate the boundaries that correspond to the target vernier
within one of the segmentation layers. With such isolation, the
template matching process can best discriminate between targets
with different properties (e.g., vernier shift direction).

Implementing a segmentation process with a plausible neural
circuit requires a complex pattern of excitation, inhibition, and
disinhibition between multiple stages. The arrows between the
boxes in Figure 4 indicate retinotopic projections such that a
neuron at a given position and with a given orientation preference
in, say V1, projects to a corresponding neuron in V2 with an

Left shift template Right shift template

A

B

C

Figure 3. A schematization of the templates (purple rectangles) used to
judge whether a target vernier is shifted to the left or the right. Signals
within the template are summed. Panel A shows the two templates super-
imposed on the boundaries generated by an isolated vernier. Panel B shows
the right shift template superimposed on the boundaries generated by a
vernier with equal sized flanking lines. Panel C shows the right shift
template superimposed on the boundaries generated by a vernier with long
flanking lines. See the online article for the color version of this figure.
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equivalent position and orientation preference. As Figure 4 indi-
cates, signals from V1 project to each of the segmentation layers.
(For the current simulations, we suppose that there are three such
layers.) However, this redundancy is checked by strong inhibition
from Segmentation Layer 0 to the other two segmentation layers.
Thus, the V1 boundary signals are initially only represented at
Segmentation Layer 0, where they undergo the boundary grouping
processes described earlier and demonstrated in Figure 1.

These boundaries then interact with nonspecific, observer-
guided, selection signals at the boundary and surface segmentation
stages (only the circuits for Segmentation Layer 1 are schematized
in Figure 4, Segmentation Layer 2 has similar circuits). Consider
the boundary segmentation circuit first. Here a retinotopic repre-
sentation of the visual scene can receive selection signals that
spread to neighbors. As schematized in the circuit in Figure 4 for
a pair of neurons at retinotopic locations corresponding to hori-
zontal neighbors (open circles), the spreading of the selection
signals pass through interneurons (solid circles) before reaching
their target neighbor. By default, these interneurons are strongly
inhibited by a tonically active interneuron (the middle black circle
in the boundary segmentation circuit). This tonic inhibition means
that, by default, a selection signal at one location cannot spread to
a neighbor because the necessary interneurons are inhibited. How-
ever, boundary signals from any of the segmentation layers at the
same retinotopic location inhibit the tonically active interneuron,
and this input disinhibits the interneurons that thereby spread the
selection signal to neighboring neurons. Thus, when a boundary
signal is present at a given location, a selection signal at that
location can spread to its neighbor. Functionally, the boundary
segmentation circuit enables the selection signal to flow along
positions where oriented boundaries are active. Thus, a selection
signal can flow along a set of connected boundaries, but will not
jump across a spatial gap in boundaries. Intuitively, the segmen-

tation circuits instantiate the common idea that attention effects
flow across groups of objects along connected contours (Grossberg
& Raizada, 2000; Raizada & Grossberg, 2003; Roelfsema,
Lamme, & Spekreijse, 1998).

To shift boundary signals, active selection signals at the bound-
ary segmentation stage for Segmentation Layer 1 inhibit the
boundaries at Segmentation Layer 0 at the same retinotopic posi-
tion. The inhibition of the boundaries at Segmentation Layer 0
leads to disinhibition of the V1 to Segmentation Layer 1 signals
that were initially suppressed. Thus, the boundary segmentation
process suppresses selected boundaries at Segmentation Layer 0
and shifts those boundaries to be represented in Segmentation
Layer 1.

Essentially the same boundary segmentation circuits exist for
Segmentation Layer 2, so grouped (connected) boundaries in Seg-
mentation Layer 0 or Segmentation Layer 1 can be selected,
suppressed, and shifted to Segmentation Layer 2. As shown sub-
sequently, an observer may have to carefully strategize how to
place selection signals to maximize performance for a given task
with given stimuli.

Figure 5 shows the dynamics of how the segmentation circuits
select boundaries corresponding to separate groups in the scene
and encodes those groups with distinct representations in the
different segmentation layers. The stimulus is the target vernier
with five half-length flankers on each side. At 150 ms after
stimulus onset, Segmentation Layer 0 has detected and grouped the
boundaries that correspond to the stimulus. These boundaries
largely inhibit corresponding boundaries that would otherwise
appear in the other segmentation layers.

The colored transparent disks on the stimulus in Figure 5 indi-
cate the location of two separate selection signals; focus on the
yellow (left side) disk first. For this stimulus, the yellow selection
signal overlaps with boundaries generated by the flanking ele-
ments to the left of the target vernier. Because the boundaries for
the left side flanking elements group together, the selection signal
at the boundary segmentation stage spreads across the entire group
of boundaries for the left side flankers. The selection signals from
the boundary segmentation stage then inhibit the corresponding
boundaries in Segmentation Layer 0, which disinhibits the V1
inputs to Segmentation Layer 1 and allows the grouped boundaries
for the flankers to the left of the target to be represented in
Segmentation Layer 1. The development of this representation can
be seen by moving down (increasing time) in Figure 5. The
functional behavior is that the selection signal spreads across a
boundary group and opens an attentional gate to shift the grouped
boundaries to its corresponding segmentation layer. Essentially the
same story applies for the (orange) selection signal focused on the
flankers to the right of the target vernier, except the boundaries are
shifted to Segmentation Layer 2.

Importantly, once the flanker boundary groups have been re-
moved from Segmentation Layer 0, the target vernier is repre-
sented by itself. Thus, when the templates in Figure 3 are used to
discriminate the vernier offset, they do so without the influence of
signals from the flanking elements, and vernier discrimination is
nearly as good (Eright � 0.45) as for a physically isolated vernier.
Figure 6A shows the time course of evidence for a right-shifted
vernier for the simulation in Figure 5. The evidence for the signals
in Layers 1 and 2 has only small values (because flanker signals
contribute to both the left-shifted and right-shifted templates),

V1

Segmentation 
Layer 0

Segmentation 
Layer 1

Segmentation 
Layer 2

Boundary segmentation Surface segmentation

Figure 4. A schematic of the model circuits for boundary and surface
segmentation. The different segmentation layers correspond to multiple
copies of the V2 boundary processing circuits. See the online article for the
color version of this figure.
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whereas the evidence for the signals in Layer 1 rise to around one
half. Although it takes approximately 350 ms for the segmentation
process to finish, a reliable judgment about vernier direction could
be made before the segmentation has stabilized.

Note that the selection signals do not have to be precisely placed
to have the desired effect for the stimuli in Figure 5. As long as a
selection signal overlaps with some of the flanker-generated
boundaries, the entire (connected) set of boundaries will be se-
lected and shifted to the corresponding segmentation layer. In this
sense, the selection signals can be nonspecific. It is not necessary
for the selection signal to precisely pick out the boundaries that
correspond to the flankers, the boundary grouping mechanisms in
area V2 provide the desired selective precision.

Figure 7 shows a second example of successful segmentation
when the flankers consist of a surrounding square and two addi-
tional squares on either side. As in Figure 1 (fourth row), the
boundaries of the five squares group together while the boundaries
of the target vernier are separate. Selection signals to the left and
right of the target spread across the grouped boundaries and shift
them to a different segmentation layer, in this case to Segmentation
Layer 2. This shift leaves the boundaries of the target essentially
isolated, which means the template discrimination proceeds with
little crowding effect from the flankers (Eright � 0.46).

In crowding experiments, the goal of the observer is to identify
the direction of the vernier offset. To accomplish that goal in the
framework of the model, the observer attempts to place the selec-
tion signals in such a way as to isolate the signals generated by the

target vernier at one of the segmentation layers. For the current
model simulations, we assume that the size of the selection signal
is fixed (at the size indicated in Figure 5) and that there is some
jitter in the placement of the selection signals so that the observer
cannot perfectly place the signals. This imprecision in placement
means that sometimes the segmentation process will fail to isolate
the target; and two notable example failures are given in Figures 8
and 9.

In Figure 8 the target is flanked by a long line on each side. The
observer tries to segment out the flanking lines and thereby leave
the target signals by themselves in Segmentation Layer 0. How-
ever, because the flanking lines are so close to the target, the
selection signals for the flanking lines are misplaced and cover part
of the target as well as the flankers. Once the selection signals
spread across all connected boundaries, the flankers and the target
are both shifted to Segmentation Layer 2. The result is that the
templates applied to Segmentation Layer 2 demonstrate strong
crowding due to the presence of the flanking lines (Eright � 0.16).
The simulation summarized in Figure 8 demonstrates that it is not
sufficient for visual elements to be separately grouped (as defined
by their boundaries being disconnected). To avoid crowding, such
grouping effects must enable distinct segmentations of the flankers
and the target. On some simulated trials, the segmentation process
works properly for this stimulus because the signals overlap only
the boundaries of the flankers (e.g., at the top and bottom of the
flankers, which extend beyond the target vernier).

Stimulus

Segmentation Layer 0 Segmentation Layer 1 Segmentation Layer 2

Spatial locations of 
selection signal 1

Spatial locations of 
selection signal 2

Ti
m

e
150 ms

300 ms

450 ms

600 ms

750 ms

900 ms

Figure 5. The dynamics of the boundary segmentation process for a target vernier with five half-length
flanking lines on either side. The colored disks on the stimulus indicate selection signals that spread across
connected boundaries and shift boundary input from Segmentation Layer 0 to the other segmentation layers. By
600 ms after stimulus onset, the boundaries of the target vernier becomes isolated in Segmentation Layer 0,
which enables fine discrimination of the vernier offset. See the online article for the color version of this figure.
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In Figure 9 the target is flanked by five equally sized lines on
each side. As indicated in Figure 1 (row 1), the target and equal
length flankers form a single group of connected boundaries. The
observer might try to segment out the flanking elements, but the
selection signals spread across connected boundaries and shift
them to a new segmentation layer. For the case shown in Figure 9,
most of the boundaries are shifted to Segmentation Layer 2, but a
few boundaries get shifted to Segmentation Layer 1. When the
discrimination templates are applied at Segmentation Layer 2,
strong crowding will occur because the flanking elements contrib-
ute to the template calculations (Eright � 0.16). The simulation
summarized in Figure 9 demonstrates that crowding occurs when
the target boundaries group with the flanker boundaries, because
such grouping prohibits the boundary segmentation mechanisms
from isolating the target signals. Figure 6B shows how the evi-
dence for a right-shifted vernier varies across the three segmenta-
tion layers as a function of time for the simulation summarized in
Figure 9.

Segmentation for Surface Regions

Other attributes of the visual scene can also guide segmentation.
Here we describe a situation where segmentation is guided by
spreading selection signals across a closed surface rather than
across connected boundaries. This mechanism is similar to pro-
posed attention spreading within an object’s surface (e.g., Richard,
Lee, & Vecera, 2008; Zhao, Kong, & Wang, 2013) and the concept
of an attentional shroud (Foley, Grossberg, & Mingolla, 2012;
Tyler & Kontsevich, 1995). The circuits responsible for such
guidance are very similar to those used to spread the selection
signals across a group of connected boundaries, and Figure 4
schematizes the circuits for Segmentation Layer 1. Just as for
boundary segmentation, surface segmentation involves spreading a
selection signal to neighboring neurons in retinotopic space.
Whereas for the boundary segmentation circuit the tonic activity of
the inhibitory interneuron prevents the spread of a selection signal,
the inhibitory interneuron for the surface segmentation circuit is
not tonically active. Thus, by default, surface selection signals
easily spread (through the appropriate interneurons) to spatial
neighbors; but boundary signals from V2 at the same position
excite the inhibitory interneuron and thereby prevent selection
signals from spatially crossing an active boundary. In this way,
selection signals can become trapped within a closed set of con-
nected boundaries. An additional “pruning” signal inhibits selec-
tion signals that fall outside a closed set of connected boundaries
(this pruning process is not schematized in Figure 4). Just as for the
boundary segmentation circuit, selection signals within the surface
segmentation circuit for Segmentation Layer 1 inhibit boundaries
at corresponding retinotopic locations in Segmentation Layer 0,
and this inhibition shifts the boundaries from Segmentation Layer
0 to Segmentation Layer 1. A similar circuit allows a second
selection signal to shift boundaries to Segmentation Layer 2.

Figure 10 summarizes a simulation where the target vernier is
flanked by two rectangles. As row 10 of Figure 1 indicates, the
boundaries of the flanking rectangles group with the boundaries of
the target vernier, and therefore attempting to use the boundary
segmentation process would select boundaries for both the target
and flankers. However, the surface segmentation process can
spread selection signals (colored disks superimposed on the stim-
ulus) across the interior regions of the flanking rectangles, and
these signals selectively inhibit the boundaries at Segmentation
Layer 0 that correspond to the flankers and thereby disinhibit the
V1 inputs at the other segmentation layers. The net effect is that
the boundaries of the flankers are shifted to Segmentation Layers
1 and 2. A side effect of the shift is that the grouping between the
target vernier boundaries and the flanker boundaries is broken (as
boundary grouping can only occur within a given segmentation
layer). Ultimately, the surface segmentation process isolates the
boundaries of the target so that the flankers cause only modest
crowding (Eright � 0.49).

Just as for segmentation by boundary groups, the surface seg-
mentation process can fail when the selection signals are mis-
placed. Figure 11 shows an example failure where the right side
selection signal barely misses the right side flanking rectangle, so
the boundaries of the right side rectangle remain with the bound-
aries of the target vernier in Segmentation Layer 0 and thereby
produce some crowding (Eright � 0.25). An observer might try to
insure that the selection signals cover the flanking rectangles by
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Figure 6. The time course of evidence for a right-shifted vernier at the
different segmentation layers of the model. (A) When the flanking
targets are half the length of the vernier target, segmentation layer 0
quickly shows the strongest evidence. (B) When the flanking targets are
the same length as the vernier target, Layers 1 and 2 are inhibited by the
segmentation shift of signals to Layer 2; but Layer 2 shifts both the
target and the flanker signals so the evidence value is relatively weak
(crowding occurs). See the online article for the color version of this
figure.
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aiming for the middle of each rectangle, but then there is a risk that
the selection signal accidentally overlaps the target vernier and
pulls the target vernier boundaries into one of the segmentation
layers (as in Figure 8), which also produces strong crowding
effects.

As for the boundary segmentation process, the surface selection
signals are nonspecific. The signals need only overlap the desired
surface and the structure of the boundaries constrains the spread of
the signals to that surface. In this way, the selection circuits take
advantage of the visual information processing provided by the V2
boundary circuits.

Comparisons With Experimental Data

When an observer participates in a crowding experiment, we hy-
pothesize that he or she tries different segmentation strategies in an
effort to isolate the target vernier and thereby reduce crowding effects.
This exploration process involves identifying whether boundary
group segmentations or surface segmentations are effective and learn-
ing where to place the selection signals so as to capture the flanker
boundaries without also accidentally grabbing the target vernier
boundaries. In the simulations presented subsequently, we assumed
that observers used the best possible strategy to guide the segmenta-
tion process in a way that reduces crowding effects.

Each stimulus condition was simulated 20 times with random
variations added to the placement of the selection signals. For each
stimulus, pilot simulations explored the best pixel coordinates, (p1,
p2), to place the center of each selection signal in order to maximize
discrimination of the target vernier. On a given trial, the actual

placement of the center of a selection signal was (p1 � ε1, p2 � ε2),
where the ε terms were randomly drawn from a normal distribution
with mean zero and standard deviation of 10. Segmentation signals
were then generated in a circle with a radius of 20 pixels around (p1 �
ε1, p2 � ε2). These selection signals were initiated 100 ms after
stimulus onset. None of these choices seem critical for the simulations
we report, but future work should more carefully identify the appro-
priate size and shape of the segmentation signal area, the precision
with which the signals can be placed, and the time at which they
appear. Future work might also fruitfully explore whether these pa-
rameters are manipulable by the observer.

Each stimulus was presented for two simulated seconds, which
allowed us to fully explore the neural dynamics of the model (crowd-
ing effects are generally unaffected by stimulus duration [e.g., Wal-
lace, Chiu, Nandy, & Tjan, 2013]). Every 50 ms, the simulation
program summed neural action potentials from the cells that fed into
the templates and computed an evidence value as described in Equa-
tion 1. The average Eright value across the full two seconds of stimulus
presentation was then taken as evidence for the vernier being shifted
to the right (in the simulations all targets were shifted to the right).
These calculations were computed independently for each segmenta-
tion layer, and the final evidence value was the maximum Eright across
all three segmentation layers. We call this value Eright

� and refer to it as
the “model evidence.”

Every neuron was modeled as an integrate-and-fire neuron and
every synapse was modeled as a static synapse in the NEST
software program (Gewaltig & Diesmann, 2007). The simulations
were run on the Radon compute cluster at Purdue University.

Segmentation Layer 1

Stimulus

Segmentation Layer 0 Segmentation Layer 2

Spatial locations of 
selection signal 1

Spatial locations of 
selection signal 2

Ti
m

e

900 ms

750 ms

600 ms

450 ms

300 ms

150 ms

Figure 7. The dynamics of the boundary segmentation process for a target vernier with a surrounding and four
flanking squares. The colored disks on the stimulus indicate selection signals that spread across connected
boundaries and shift boundary input from Segmentation Layer 0 to the other segmentation layers. In this way,
the target vernier becomes isolated in Segmentation Layer 0, which enables fine discrimination of the vernier
offset. See the online article for the color version of this figure.
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Radon consists of 45 HP Moonshot compute nodes with 32 GB
RAM. Each of the 42 stimulus conditions were simulated with a
single node, which has 8 cores that can be used in parallel by the
NEST simulation. Because the Radon system is for general aca-
demic use, the simulations were bundled into 15 parallel batches of
two to four stimulus conditions such that conditions in a batch ran
serially on a given compute node. Running the full set of simula-
tions took almost 2 days from start to finish on this system.

To ease the computational requirements, the simulated image
plane was adjusted to the size of the flanking stimuli, and the size
of the network model was correspondingly adjusted. For example,
the smallest simulation was for the vernier presented by itself. This
simulation was 40 � 60 pixels and the network consisted of nearly
1 million neurons (including simulated input and recording de-
vices) and 5.5 million synapses. In NEST, the model network has
to be reconstructed for every simulation and this smallest simula-

tion took nearly 30 min to define (mostly to set up the synapses
between neurons). Once established, a 2-s trial (with an additional
one second intertrial interval) took approximately 6 min. The full
20 trials for this condition took around 2 hours.

The simulated neural network was much larger for other stim-
ulus conditions. The largest, for the seven flanking squares con-
dition (Figure 16B), used an image plane of 280 � 50 pixels. The
corresponding neural network consisted of approximately 5.7 mil-
lion neurons (including simulated input and recording devices) and
nearly 33 million synapses. It took nearly 5 hr to define a network
of this size in NEST (again, most of the time was spent defining
the synapses), and once the network was defined each trial took
approximately 40 min to simulate. Simulating the full set of 20
trials took approximately 14 hr.

The NEST code (written in Python) to reproduce all the findings
reported in this article is available at the Open Science Framework
(https://osf.io/4fhxs/?view_only�a1d4cee6f6514b3da9e8bf40c13
2b085). Random variation in the ε terms will mean that a new run
of the code will produce slightly different results than what are
reported here, but the main effects should be robust.

In addition to the location, size, and accuracy of the segmenta-
tion signals, the parameters of the model are the synaptic weights
between various neurons. Not including synapses defined to em-
ulate orientation filters for model V1 simple cells (defined by
oriented Gabor functions), there were 38 synapse types defined in
the model. Many of these synapse types simply passed information
from one cortical area to another (e.g., the same synapse type was
used to connect V1 Layer 2/3 complex cells to V2 Layer 4 and V2
Layer 6 complex cells), and the main constraint on the weight
magnitude was to ensure that the signal was strong enough to
evoke a sufficient response at the target layer. For other synapse
types, the sign (excitatory or inhibitory) and magnitude of a weight
was chosen to produce functional model behaviors such as bound-
ary grouping, spreading of selection signals along connection
boundaries, and shifting of boundaries from one segmentation
layer to another. The relevant constraints were generally to insure
that inhibitory signals were sufficiently strong to prevent activity
in appropriate layers. For example, as schematized in Figure 2,
neurons in Segmentation Layer 0 inhibit neurons in Segmentation
Layer 1, and the strength of these inhibitory signals needed to be
strong enough to overwhelm excitatory signals from V1 that would
otherwise establish a boundary representation in Segmentation
Layer 1. Likewise, inhibitory feedback from the Boundary seg-
mentation layer to Segmentation Layer 0 needs to be strong
enough to overwhelm the excitatory V1 to Segmentation Layer 0
signals. Similar requirements constrained the synapse weights in
circuits for boundary grouping and segmentation signal spreading.
Usually, there was a broad range of weight values that would
produce similar network behaviors; no effort was made to adjust
synaptic weights to match empirical data. Changes to the synaptic
weights would surely affect the overall magnitude of crowding, but
they are unlikely to alter the main effects of grouping and seg-
mentation unless those functional model properties are lost.

In the following sections, we describe how the model behavior
compares with measurements from psychophysical studies of
crowding. The psychophysical studies report two related perfor-
mance measures. Many studies simply report the mean vernier
offset threshold that is needed for observers to be 75% correct.
Larger threshold values correspond to stronger crowding. We
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Figure 8. The dynamics of a failed boundary segmentation process for a
target vernier with two flanking long lines. The colored disks on the
stimulus indicate selection signals that spread across connected boundaries
and shift boundary input from Segmentation Layer 0 to the other segmen-
tation layers. Because of imprecise placement of the selection signals, the
flankers and target are all shifted to Segmentation Layer 2, so the template
matching process experiences crowding. See the online article for the color
version of this figure.
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propose that larger model evidence values, Eright
� , should corre-

spond to smaller vernier thresholds. Rather than risk overfitting the
empirical data with a quantitative mapping between model evi-
dence and thresholds, we simply plot Eright

� on a reverse scale when
considering empirical findings that report thresholds.

A second measure from the psychophysical studies is a ratio that
indicates the “threshold elevation” relative to an isolated vernier. A
threshold elevation value of one indicates that the measured
threshold is the same as the threshold for an isolated vernier (no
crowding). Larger threshold elevation values indicate stronger
crowding. Because larger model evidence is related to smaller
thresholds, we computed “evidence elevation” by taking the ratio
of evidence for an isolated vernier divided by the evidence for
another condition. Because crowding will produce smaller model
evidence values, larger evidence elevation values correspond to
stronger crowding.

Before turning to a detailed discussion of empirical data and the
model’s behavior, we want to clarify the model’s explanatory
scope. We do not anticipate a perfect fit between the model’s
behavior and human performance. Discrepancies are expected for
many reasons, including (a) the model is obviously incomplete
(e.g., it lacks a retina and does not take into account differences
between the fovea and periphery), (b) crowding may involve many
different mechanisms that are not fully understood or included in
the model, (c) empirical measures of crowding effects are often
quite variable because of differences in stimuli, tasks, stimulus
placement, and random sampling of observers. Where possible, we
do report variability in the model’s behavior across trials as error
bars (standard error of the mean). However, it is important to

recognize that these error bars are generally not directly related to
the error bars reported in corresponding empirical studies. The
latter describe variability in mean performance across observers,
while the error bars from the simulations describe variability for a
simulation with a fixed set of parameters (e.g., a single observer).

Our goal is not to fully explain crowding effects, but to dem-
onstrate that the model’s mechanisms for perceptual grouping and
segmentation enable it to account for the empirical findings that
are related to perceptual organization. We anticipate that there is
much room for model development to account for many properties
of crowding, but that grouping and segmentation play an important
role in many situations. The following sections discuss examples
of the five effects described in the introduction.

Size of Flankers

Crowding effects are greatly reduced when the length of the
flanking lines are shorter or longer than the target vernier (Malania
et al., 2007; Manassi et al., 2012). Figure 12A shows representa-
tive results from Manassi et al. (2012). The horizontal dashed line
indicates the offset threshold for a vernier in isolation (no flank-
ers). The y-axis plots “threshold elevation,” the ratio of the offset
thresholds for the various flanking conditions against the threshold
for the target by itself. Larger threshold elevations indicate that the
target vernier offset had to be larger. When the flanking elements
are the same height as the target vernier, the threshold is large,
thereby indicating crowding. When the flanking elements are a
different size than the target, the threshold is modestly or hardly
increased relative to the no flankers condition. These results are
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Figure 9. The dynamics of a failed boundary segmentation process for a target vernier with five flanking equal
length lines on each side. The colored disks on the stimulus indicate selection signals that spread across
connected boundaries and shift boundary input from Segmentation Layer 0 to the other segmentation layers.
Most the boundaries get shifted to Segmentation Layer 2, where the joint representation of the target and flanker
boundaries leads to strong crowding. See the online article for the color version of this figure.
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challenging for theories that hypothesize crowding is strictly due
to a compulsory pooling mechanism. Although shorter flanking
lines might understandably produce less interference in a pooling
model, it is difficult to explain how longer flanking lines lead to
reduced interference (Clarke et al., 2014). Despite this challenge,
Figure 12B shows that the model qualitatively matches the empir-
ical data.

As described in Figure 5, the model’s grouping mechanisms
connect the boundaries of short flankers but, because of the spatial
layout of the stimuli, the boundaries of the target vernier are not
part of these groups. These different groups then guide the bound-
ary segmentation mechanisms and result in little crowding, relative
to an isolated vernier. Essentially the same result occurs when the
short flankers are replaced by long flankers. The spatial layout of
the visual elements keeps the target boundaries separate from the
boundary groups of the flankers. In contrast, Figure 9 shows that
when the flankers have the same length as the target, all the
boundaries connect in a single group. As a result of these boundary
connections, the segmentation process cannot isolate the represen-
tation of the target and strong crowding occurs.

It is worth noting that although the qualitative pattern of model
evidence elevation is similar to the empirical threshold elevation,
there are notable quantitative differences. Empirical thresholds in
the equal length condition are nearly six times as large as for
an isolated vernier, while there is only a tripling of model evidence
in the equal length condition. A qualitative pattern match is the
best we can hope for when comparing the model to the empirical
data. In part, this restriction is because the empirical data comes
from quite diverse settings (sometimes data is gathered in the
fovea and sometimes in the periphery and with some variations in

stimulus luminance and display equipment). Without denying that
there is a need to model such variations, our intention at the
moment is to explain the robust patterns in the data, and the model
predicts that these robust patterns will hold for a wide variety of
settings.

Number of Flanking Lines

As further evidence for an important role of perceptual grouping
in crowding, Malania et al. (2007) and Manassi et al. (2012)
reported that varying the number of flanking lines had effects that
depended on the length of the flanking lines. Representative em-
pirical data is presented in the left column of Figure 13 from
Manassi et al. (2012; where data were presented at 9 degrees of
eccentricity) and Figure 14 from Malania et al. (2007; where data
were presented foveally). In every plot the x-axis varies the num-
ber of flanking lines, while the y-axis plots either threshold eleva-
tion (see Figure 13) or the threshold value (see Figure 14).

The key finding in Manassi et al. (2012), Figure 13, is that the
long and short flankers produce weaker crowding (lower threshold
elevation) as the number of flankers increases. In contrast, for
flankers equal in length to the target, crowding stays relatively
constant even as the number of flankers increases. The right
column of Figure 13 shows that the model largely reproduces these
characteristics. These properties follow from the model because
with more short and long flankers it becomes easier to place
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Figure 10. The dynamics of the surface segmentation process for a target
vernier with flanking rectangles. The colored disks on the stimulus indicate
selection signals that spread across the closed surfaces defined by the
rectangles and shift boundary inputs from Segmentation Layer 0 to the
other segmentation layers. In this way, the target vernier becomes isolated
in Segmentation Layer 0, which should enable fine discrimination of the
vernier offset. See the online article for the color version of this figure.
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Figure 11. The dynamics of a failed surface segmentation process for a
target vernier with flanking rectangles. The colored disks on the stimulus
indicate selection signals that spread across the closed surfaces defined by
the rectangles and shift boundary inputs from Segmentation Layer 0 to the
other segmentation layers. The left side (yellow) selection signal success-
fully transfers the boundaries of the left flanking rectangle to Segmentation
Layer 1, but the right side (orange) selection signal does not overlap the
flanking rectangle, so the boundaries of the rectangle remain with the target
vernier. The result is that the target boundaries are not isolated from the
right side flanking rectangle, and some crowding occurs. See the online
article for the color version of this figure.
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boundary selection signals so that they capture only the boundaries
of the flankers and not the boundaries of the target. For flankers
equal in length to the target, the boundaries of the flankers group
with the boundaries of the target, so the segmentation process
cannot isolate the target boundaries (see Figure 9). Thus, varying
the number of equal length flankers hardly changes crowding in
the model.

An exception is for the smallest number of flankers. In the
model, going from two to four flankers leads to a bigger relative
increase than what is seen in the experimental data of Manassi et
al. (2012). More generally, although the model captures many of
the basic trends of the empirical data, there are several quantitative
discrepancies. Our goal is not to account for all of these discrep-
ancies, in part because the empirical data itself is rather variable,
and because it is the qualitative pattern that suggests an influence
of perceptual grouping. Figure 14A shows findings from Malania
et al. (2007) on the effect of the number of short flankers. Al-

though like Figure 13B it shows a general decrease in crowding as
more flankers are added, the shape of the curve is rather different
and so is the overall magnitude of crowding. Similar data vari-
ability is present in Figure 14B, which shows an increase in
crowding for equal length flankers, whereas Figure 13A shows
essentially no change. As it turns out the model does a reasonably
good job of matching some of the quantitative aspects of the data
in Figure 14A, but we caution readers to not take the good fits too
seriously just as we caution readers to not take the quantitative
discrepancies in Figure 13 as too damning. Rather, our conclusion
is that the model seems to do a reasonable job of capturing many
of the robust effects that are demonstrated in the various empirical
data.

Figure 14B highlights one robust effect that the model does not
capture. The empirical data indicate that short flankers produce
stronger crowding than long flankers (the same effect can be seen
by comparing the scales of the y axes in Figures 13A and 13C). In
contrast, the model predicts that the long flankers produce stronger
crowding than the short flankers. This model behavior occurs
because of the properties of the discrimination template filters,
which are large enough to pool inputs from the extended parts of
the long flankers. As more empirical data clarifies the nature of
these effects, it might be worthwhile to consider other discrimina-
tion templates (or other mechanisms) to account for this model
discrepancy.

Closure

Figure 15A shows empirical data from Manassi et al. (2012)
with flankers that created closed contours (stimuli b and d) or not
(stimuli a and c). They found strong crowding from unclosed
contour flankers but very modest crowding for closed contour
flankers. These differences held even though the vertical flanker
lines immediately adjacent to the target are the same in all condi-
tions, and the differences held even when the flankers were
matched in terms of overall amount of contour (e.g., stimuli b and
c). In the model, a flanker with closed contours supports the
surface segmentation process, as in Figure 10, which shifts the
contours abutting a surface into a different segmentation layer.
Because the target is not part of the flanker-defined surfaces, it
remains at Segmentation Layer 0 and thereby is largely uncrowded
by the flankers.

In contrast, for the flankers without closed contours, the
surface segmentation process cannot capture the boundaries of
the flanking elements. Moreover, the boundary segmentation
process is ineffective because the boundaries of the target group
with the boundaries from the innermost vertical lines of the
flankers (see Figure 1, row 12). Such grouping means that the
boundary segmentation process will shift the boundaries of both
the flankers and the target together (or not at all) and that there
will be crowding.

Uncrowding

Manassi et al. (2013) suggested that the immediate flankers
around a target, which generally produce crowding, could them-
selves be crowded by additional flankers and thereby free the
target; a process they called uncrowding. Figure 16 shows data and
stimuli for this result. A single square around a target vernier
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Figure 12. Crowding is strongest when the flankers are the same size as
the target and weaker for shorter and longer flanking lines. Panel A shows
empirical data from Manassi et al. (2013). Panel B shows model behavior
for corresponding stimuli. The hatched line shows normalized performance
for the vernier alone condition, where the elevation is 1.0. Please note the
different y-axis scalings.
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Figure 13. Crowding as a function of the number of flankers for different types of flankers when the stimuli
were presented in the periphery. The left column shows empirical data from Manassi et al. (2012), whereas the
right column shows the model’s behavior for corresponding stimuli. Note that the plots have different scales on
the y-axis to better demonstrate the effect of the number of flankers. See the online article for the color version
of this figure.
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increased the vernier threshold relative to a vernier in isolation.
The threshold is smaller when the same surrounding square is
flanked by two or more squares.

Rather than hypothesizing inhibition between distinct repre-
sentations of different stimuli, the model explains the uncrowd-
ing effect as the result of the boundary segmentation process.
Although the boundaries of the target vernier do not group with
the surrounding square (see row 4 of Figure 1), a single sur-
rounding square is difficult to segment from the target because
the two sets of boundaries are in close spatial proximity (similar
to Figure 8). When additional flanking squares are added, they
generate boundaries that group with the square surrounding the
target but do not group with the target’s boundaries. Because
the selection signals spread along grouped boundaries, the
observer can place the selection signal far from the target and
thereby shift the entire set of flanker boundaries to a different
segmentation layer while leaving the target’s boundaries unse-
lected. This process is demonstrated in Figure 7 for four flank-

ing squares with one central square. Importantly, unlike classic
crowding models that suppose crowding effects occur only
within Bouma’s window (Pelli et al., 2004; Pelli & Tillman,
2008), we provide a segmentation mechanism through which
crowding can be decreased by flankers across large parts of the
visual field.

Uncrowding and Similarity

Manassi et al. (2013) further explored the properties of un-
crowding by varying the shapes of the central and flanking ele-
ments. Figure 17A shows empirical data for one set of compari-
sons. Stimulus conditions a, b, and c are the same as in Figure 16,
and show strong crowding for a single surround square but un-
crowding when additional flanking squares are added to each side.
Condition d removed the horizontal components from the addi-
tional flanking squares and thereby reintroduced a crowding effect.
Condition e removed the horizontal components of the central
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Figure 14. Crowding as a function of the number of flankers for different types of flankers when the stimuli
were presented in the fovea. The left column shows empirical data from Malania et al. (2007), whereas the right
column shows the model’s behavior for corresponding stimuli. See the online article for the color version of this
figure.
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square as well and, again, showed a crowding effect, which implies
that the uncrowding effects are not due to local interactions of the
vertical lines but involve long range grouping mechanisms.

Figure 1 (rows 4 through 6) shows how the model boundaries
group for similar stimuli (one difference is that the stimuli for the
empirical study had three flanking squares on each side; to ease
computation only two flanking squares per side were used). With
two flanking squares on each side of a central square, all the
boundaries of the squares group together, and are thereby easily
segmented and shifted to a segmentation layer distinct from the
boundaries of the target: uncrowding. When the flanking squares
lose their horizontal parts, the boundary grouping substantially
changes. The boundaries of the two innermost flanking lines group
with the boundaries of the central square, but the boundaries for

the other flanking elements form smaller groups from pairs of
vertical lines. The central group of boundaries thereby makes for
a moderately small target for placement of selection signals, and
the selection signals often either miss the flanker boundaries or
inadvertently select the boundaries of the target. Thus, this stim-
ulus typically produces crowding.

Row 6 in Figure 1 shows the boundary groupings generated
when the horizontal parts of all squares are removed. Pairs of
vertical lines form boundary groups, and similar to the previous
case, it is difficult to place selection signals accurately enough to
segment out the flanker boundaries without also grabbing the
boundaries of the target; so this condition produces crowding
effects. Figure 17B shows the model evidence values for the
different stimulus conditions. Although there are quantitative dif-
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Figure 16. Conditions that produce crowding and uncrowding. (A) Em-
pirical data from Manassi et al. (2013) found adding flanking squares
around a target led to lower thresholds (uncrowding). (B) For the same kind
of stimuli, the model shows a similar effect because additional flankers
make it easier for the segmentation process to select the flanker boundaries
and shift them to a unique segmentation layer.
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Figure 15. Crowding as a function of flanking stimuli that formed closed
surfaces or not. (A) Empirical data from Manassi et al. (2012; see also
Sayim et al., 2010) found that crowding was much reduced for flanking
stimuli that produced closed surfaces. (B) For the same kind of stimuli, the
model shows the same effect of closure due to the ability of the surface
segmentation process to shift flankers with closure to a different segmen-
tation layer than the target.
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ferences with the empirical data, the overall pattern for the data
and the model is similar across different stimulus conditions.

Similar to the data in Figures 13 and 14, a precise quantitative
fit from a model with one set of parameters is not conceivable
given the variability in the empirical data. For example, the single
surround square condition produces a threshold of around 1400 arc
seconds in Figure 16A but a threshold of around 1,000 arc seconds
in Figure 17A. The differences presumably reflect variation due to
random sampling of observers, and they cannot be accounted for
by a model with a fixed set of parameters.

In an additional study, Manassi et al. (2013) rotated the central
or flanking squares by 45 degrees so that there could be various
combinations of squares and diamonds. Figure 18A shows the data
and a schematic of the stimulus conditions. The overall conclusion
was that a square or a diamond by itself around the target vernier
produced crowding, but that additional flanker elements of the
same type (e.g., a central diamond among flanking diamonds)
reduced the strength of crowding. When the central element and
the flankers were of different types, crowding was strong.

Figure 1 (rows 4 and 7 through 9) shows how the model
boundaries group for similar stimuli, and the strength of crowding

is easily predicted from the boundary groupings. When the central
element is a square and the flankers are diamonds, the boundaries
from the square are separate from the boundaries of the diamonds.
This separation occurs because the grouping process interpolates
between similarly oriented boundaries in a direction consistent
with their orientation. The horizontal boundaries of the central
square do not group with the diagonal boundaries of the diamonds
because they have inconsistent orientations. Boundaries from the
flanking diamonds do group together because their large horizontal
size (due to the rotation) makes the left and right diamond points
touch. Because the boundaries of the central square do not group
with the boundaries of the diamond flankers, a selection signal that
only covers a flanking diamond will not also segment out the
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Figure 18. Stimuli that explore uncrowding and similarity. (A) Empirical
data from Manassi et al. (2013) found crowding is strongest if the central
and flanking elements are different shapes. (B) For the same kind of
stimuli, the model shows similar crowding effects because the different
shapes do not group together and thereby prevent the segmentation process
from isolating the target vernier boundaries.
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Figure 17. Stimuli that explore uncrowding and similarity. (A) Empirical
data from Manassi et al. (2013) found that adding squares reduced crowd-
ing effects, but removing the horizontal lines from the flanking squares
reintroduced crowding effects. (B) For the same kind of stimuli, the model
shows similar crowding effects because the extra flanking squares produce
grouping effects that are absent when the horizontal lines are removed.
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boundaries of the central square, and the target vernier will remain
crowded. Alternatively, a selection signal that attempts to directly
cover the central square will risk simultaneously selecting the
boundaries of the target vernier, which will likewise produce
crowding.

The situation is similar when the central element is a diamond
and the flankers are squares. The flanking squares group together
(due to collinearity of the horizontal lines in the squares). How-
ever, the oblique boundaries of the central diamond do not group
with the horizontal boundaries of the squares. A selection signal on
the flankers does not separate the boundaries of the central dia-
mond from the target, and a selection signal on the boundaries of
the diamond risks simultaneously selecting the boundaries of the
target. In either case, the model produces crowding of the target.

When the central element and flanking elements are all dia-
monds, the points overlap, so all boundaries are connected (and
thus grouped). A selection signal covering any of the diamonds
will thereby spread across the entire set of boundaries and shift
them to a different segmentation layer than the target boundaries
(which do not group with the diamonds). There is some crowding
in this condition because it takes time for the selection signals to
capture the boundaries of the central diamond and shift them away
from the target boundaries.

Conclusions

The cortical neural network model uses perceptual grouping and
a novel segmentation process to account for challenging properties
of visual crowding. In particular, simulations demonstrate that the
model properly accounts for effects of flanker length, the number
of flanker lines, Gestalt effects, uncrowding effects, and similarity
effects. These properties of crowding are challenging (or impos-
sible) for many other models because they assume that crowding
occurs as a result of mechanisms located in a feedforward path of
visual processing. For example, basic pooling models propose that
crowding occurs when higher level neurons, for example, V2
neurons with larger receptive fields, pool signals from lower level
neurons, for example, V1 neurons with smaller receptive fields.
Pooling is inevitable for object recognition since, for example, a
higher level neuron sensitive to squares needs to pool signals from
lower level neurons coding for the lines making up the square.
From this perspective, crowding occurs because of the unavoidable
bottlenecks of object recognition.

Our model fundamentally differs from these approaches, and
these differences allow the model to account for the crowding
effects discussed here. First, our model comprises both bottom-up
and top-down processing that enables an observer to perceptually
group disparate elements of a scene, which promotes a segmenta-
tion driven change in the visual representation of those elements.
Second, and more importantly, spatial resolution is at no stage per
se limited by low level or high level bottlenecks (Herzog, Thunell
& Ögmen, 2016). Although the top-down signals are imprecise
(low-resolution), their effects are directed by the (high-resolution)
grouping process. So the model circuits provide an example of
how top-down and bottom-up interactions occur to promote visual
processing of information relevant to the observer. The resulting
model behavior is robust, in the sense that top-down signals do not
have to be precisely placed but are sensitive to small stimulus
changes that alter perceptual grouping. We propose that such

interfaces between top-down and bottom-up signals are a general
issue to be addressed in cortical circuits because similar kinds of
crowding effects also occur in domains such as audition (Oberfeld
& Stahn, 2012) and haptics (Overvliet & Sayim, 2015).

It is important to note that the current model simulations are not
uniformly successful. Regarding effects of flanker length, the
model incorrectly predicts that long flankers produce stronger
crowding than short flankers (the data show the opposite relation-
ship). We believe this discrepancy can partly be accounted for by
changing the height of the template so that it includes less input
from the long flankers, even though those longer flankers are
easier for the segmentation process to select. More generally, the
model does not produce quite as strong a crowding effect as
reported by the empirical data. It is easy to scale the model
crowding effect by modifying the constant in the numerator of
Equation 1, but our goal is to present the overall effects of
perceptual grouping and segmentation rather than to precisely fit
the empirical measurements. Indeed, there is enough variability in
the empirical measurements that a precise fit to the data would
likely indicate model overfitting.

There are conceptual similarities between the present work and
models proposed by Jehee, Roelfsema, Deco, Murre, and Lamme
(2007) and Foley et al. (2012). These earlier investigations also
hypothesized that crowding effects were related to perceptual
organization (grouping) and that top-down cues helped to isolate
the cortical signals corresponding to the target. However, those
studies only simulated a small set of crowding effects, and showed
a “proof of concept” for their ideas rather than provide a system-
atic investigation into the relationships between grouping, segmen-
tation, and crowding. Although our mechanisms and details differ
from Jehee et al. (2007) and Foley et al. (2012), there are common
ideas that might allow for valuable cross-talk between these mod-
els in future investigations. There are also similarities between the
model presented here and the suggestion that crowding occurs
when attention cannot access fine grained information about an
element presented in clutter because the resolution of attention is
limited (He, Cavanagh, & Intriligator, 1996), although the hypoth-
esized mechanisms are quite different.

Our model complements explanations of other crowding effects
(e.g., Levi, Hariharan, & Klein, 2002; Levi, Klein, & Hariharan,
2002; Pelli, 2008; Pelli et al., 2004), which typically do not
consider the potential impact of perceptual organization and often
use stimuli where perceptual organization hardly plays a role. For
many crowding experiments (especially those involving letters),
the boundaries generated by the flanker and target stimuli always
group together, so segmentation by boundary grouping is not
possible. Such a situation would be equivalent to the simulation
described in Figure 9, where the flanking lines are the same size as
the target and everything groups together. With such groupings,
the segmentation process cannot separate the target from the
flankers, and crowding occurs depending on the interference of
the flankers on the target identification task. On the other hand, the
presence of boundary grouping between the target and flankers
does not necessarily imply strong crowding; for example, if the
flankers are a different color or define a surface that is separate
from the target (see Figures 10 and 15) then other segmentation
mechanisms can isolate the target representation. Nevertheless, the
model presented here has a fundamentally different representation
of visual information than the summary statistics approaches of
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Balas et al. (2009) and Keshvari and Rosenholtz (2016). It would
be interesting to see if the summary statistics approach can account
for the crowding effects reported here and to then identify empir-
ical tests that can distinguish between the model types.

More generally, the model suggests that it is not boundary
grouping but segmentation that regulates whether crowding oc-
curs. Oftentimes these two processes go together, such that bound-
ary grouping between the target and flankers makes segmentation
impossible (e.g., see Figure 9), whereas boundary grouping among
the flankers but not the target makes segmentation possible (e.g.,
see Figures 5 and 7). In some cases, as in Figure 8, the flanker and
target boundaries do not group together, but they are in such close
spatial proximity that it is difficult to select just the flanker
boundaries without also selecting the target boundaries; thus
strong crowding effects can occur without boundary grouping. It is
important to note that the model makes a distinction between the
mechanisms for boundary grouping and segmentation, but it is
likely that human observers are largely unaware of these distinct
processes. In a task that asks observers to judge whether flanker
and target elements group together, we suspect that observers
simply examine whether they can segment them. If such segmen-
tation is easily done, then the elements may be judged to be in
different groups. If such segmentation is not easily done, then
observers will report that the elements are part of a common
perceptual group. Thus, we propose that a perceptual group con-
sists of visual stimuli whose cortical representations cannot be
easily segmented. This perspective is consistent with earlier claims
(Herzog & Manassi, 2015; Herzog et al., 2015), that grouping
(within the model, a failure of segmentation) between the target
and flanker boundaries is necessary for crowding to occur.

We believe that low-level models of crowding that focus solely
on spatial separation or feature similarity are fundamentally in-
complete because they do not consider the role of grouping and
segmentation on crowding. Some properties of crowding, such as
that bigger flankers produce weaker crowding, are difficult to
explain by low-level crowding mechanisms. As we have shown,
these seemingly paradoxical properties become understandable
when considering the role of perceptual grouping and segmenta-
tion. We have restricted our focus on one visual task (vernier
offset) because it allows for easy comparison across many differ-
ent types of flankers, but the very same mechanisms should apply
to other situations where the target and flankers differ in size,
intensity, or shape that would alter perceptual grouping effects
(e.g., crowding of letters as in Banks et al., 1979, Experiment 3).
An extension of the segmentation mechanism to include color
might likewise explain why crowding is reduced when the flankers
differ in color from the target (e.g., Kooi et al., 1994; Rosen &
Pelli, 2015).

Our claim that low-level models of crowding are incomplete
does not mean that we believe them to be wrong in all details. For
example, we can easily imagine that the current model could
include characteristics of low-level models to explain Bouma’s
law (that crowding occurs only within a spatial window with the
size of half the target eccentricity) by altering the template reso-
lution, the features that contribute to the template calculation, or
the resolution of visual space in the periphery. With such an
interpretation, we anticipate that Bouma’s law would be notable
when grouping and segmentation effects are nearly nonexistent.
Alternatively, Bouma’s law might be understood as a special case

of grouping by proximity, and such properties might be incorpo-
rated into a future version of the current model.

An important property of the cortical model is that it is not a
model of crowding per se, but is a model of visual perception that
proposes an explanation for a variety of crowding effects. None of
the model properties exist purely to account for the characteristics
of crowding; rather they exist to enable the model to functionally
process and represent visual information. As such, some properties
of crowding can now be connected to a diverse range of other
aspects of visual perception. For example, the boundary groupings
that support the segmentation process that underlie crowding ef-
fects also play important roles in the model’s explanations of
illusory contours, neon color spreading, visual persistence, meta-
contrast masking, figure-ground distinctions, texture segmenta-
tion, visual search, afterimages, scene fading, contour erasure, and
many more (Bhatt et al., 2007; Francis, 1997, 2015; Francis,
Grossberg, & Mingolla, 1994; Francis & Kim, 2012; Francis &
Rothmayer, 2003; Grossberg, 1994; Grossberg & Mingolla, 1985a,
1985b; Grossberg, Mingolla, & Ross, 1994). A single model that
simultaneously produces all of these effects does not yet exist (or,
at least, cannot be simulated because the necessary computational
resources would be enormous). Nevertheless, the functional be-
haviors of the various versions of the model appear to be consis-
tent, so we anticipate that future experimental and theoretical work
will link properties of crowding with other visual phenomena to
gain a better understanding of how many different properties of
visual perception interrelate. Such an understanding may help
identify new methods to investigate visual processing and identify
ways to mitigate crowding effects when they impair human per-
formance. Because crowding affects a wide variety of cognitive
behaviors, the model offers a new way to understand general
properties of object recognition and deficits in visual processing.
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