
Journal of Vision (2025) 25(12):16, 1–17 1

Dynamics of vision: Grouping takes longer than crowding
Martina Morea Laboratory of Psychophysics,

Brain Mind Institute,
École Polytechnique Fédérale de Lausanne (EPFL),

Lausanne, Switzerland

Michael H. Herzog Laboratory of Psychophysics,
Brain Mind Institute,

École Polytechnique Fédérale de Lausanne (EPFL),
Lausanne, Switzerland

Gregory Francis Department of Psychological Sciences,
Purdue University, West Lafayette, IN, USA

Mauro Manassi School of Psychology,
University of Aberdeen, King’s College,

Aberdeen, United Kingdom

Vision is often understood as a hierarchical, feedforward
process, where visual processing proceeds from
low-level features to high-level representations. Within
tens of milliseconds, the fundamental features of the
percept are established. Traditional models use this
framework to explain visual crowding, where nearby
elements impair target perception with minimal
influence from stimulus duration. Here, we show that, at
least for more complex displays, crowding involves
highly dynamic processes. We determined vernier offset
discrimination thresholds for different flanker
configurations. In Experiment 1, for a 160-ms stimulus
duration, crowding was lower for flanking
Cubes/Rectangles compared to Lines, pointing toward
underlying grouping processes. However, strong
crowding occurred in all conditions at 20 ms, showing
that grouping requires a minimum stimulus duration to
occur. In Experiment 2, the crowded vernier (20 ms) was
preceded by a 20-ms Cubes display. This brief preview
led to uncrowding of the subsequently presented
flanked vernier, but only for flankers that ungroup for
longer durations (i.e., Cubes). This uncrowding effect
occurred for time spans up to 1 s (Experiment 3) but
could be interrupted by elements presented between
the preview and the flanked vernier (Experiment 4). Our
findings are well predicted by the LAMINART model,
which employs recurrent segmentation processes
unfolding over time to separate objects into distinct
representation layers. Taken together, our novel preview
effect highlights the importance of spatiotemporal
grouping in crowding. In contrast to classic feedforward

models, we propose that crowding is a dynamic process
where multiple interpretations are modulated and gated
by grouping mechanisms evolving over time.

Introduction
In classic models of vision, a stimulus is processed

in a feedforward fashion in the visual hierarchy until
a conscious percept is elicited. In the early stages
of processing, low-level features, such as edges, are
extracted, which become the building blocks for
textures, objects, and scenes in subsequent processing
stages (Cichy, Pantazis, & Oliva, 2014; DiCarlo,
Zoccolan, & Rust, 2012; Hubel & Wiesel, 1962; Ricci
& Serre, 2020; Riesenhuber & Poggio, 1999). Deep
convolutional networks have demonstrated that this
feedforward approach is highly effective for object
recognition (Cichy, Khosla, Pantazis, Torralba, &
Oliva, 2016; He, Zhang, Ren, & Sun, 2016; Krizhevsky,
Sutskever, & Hinton, 2012; Lecun, Bottou, Bengio,
& Haffner, 1998; Simonyan & Zisserman, 2014).
Psychophysical studies further support this idea, since
humans can detect objects with a remarkable speed
that does not need or allow recurrent processing
(Fabre-Thorpe, Delorme, Marlot, & Thorpe, 2001;
Thorpe, Fize, & Marlot, 1996). According to this view,
feedback projections in the brain are mostly associated
with attention, expectation, and other top-down
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processes that influence feedforward processing, such as
prioritizing attended stimuli (for a review, see Gilbert &
Li, 2013).

These classic feedforward models of vision have
been the main theoretical framework to explain visual
crowding, where the perception of a target object is
impaired by the presence of nearby objects (Levi, 2008;
Manassi & Whitney, 2018; Pelli, 2008; Strasburger,
Rentschler, & Jüttner, 2011; Whitney & Levi, 2011).
For instance, vernier offset discrimination accuracy
significantly decreases when two vertical lines are
placed on either side of the target (Levi, Klein, &
Aitsebaomo, 1985; Malania, Herzog, & Westheimer,
2007; Westheimer & Hauske, 1975). Extending the
presentation time of the target and flankers to several
hundred milliseconds only slightly reduces the crowding
effect, indicating that prolonged processing time
has little impact on perception in classic crowding
paradigms (Wallace, Chiu, Nandy, & Tjan, 2013).
These characteristics align with the idea that the initial
stages of visual processing in a feedforward fashion are
most essential for perceiving stimuli under crowding
conditions. Contrary to this view, here we show that
a 20-ms preview of flankers can lead to uncrowding
for objects presented up to 1 s later. Importantly, this
preview effect is configuration specific and, hence,
different from priming.

We propose that a brief 20-ms preview initiates
flanker processing across time, allowing their
representations to be grouped away from the
subsequent vernier target. Hence, visual processing can
require substantial time and is fundamentally shaped
by grouping processes (Bornet et al., 2021; Bornet,
Doerig, Herzog, Francis, & Van Der Burg, 2021;
Choung, Bornet, Doerig, & Herzog, 2021; Choung,
Rashal, Kunchulia, & Herzog, 2023; Francis, Manassi,
& Herzog, 2017; Herzog, 2022; Herzog, Sayim,
Chicherov, & Manassi, 2015; Herzog & Manassi, 2015;
Jastrzębowska, Chicherov, Draganski, & Herzog, 2021;
Manassi, France, & Herzog, 2012; Manassi, Sayim, &
Herzog, 2013; Manassi, Hermens, Francis, & Herzog,
2015; Manassi, Lonchampt, Clarke, & Herzog, 2016;
Saarela, Sayim, Westheimer, & Herzog, 2009; Saarela,
Westheimer, & Herzog, 2010; Sayim, Manassi, &
Herzog, 2014; Sayim, Westheimer, & Herzog, 2010;
Tiurina, Markov, Choung, Herzog, & Pascucci, 2022).
What matters is not the presentation time per se but
the time allocated for grouping processes. We show
that this body of results can be well explained by a
previously developed neural network model of visual
perception, LAMINART (Francis et al., 2017; Kon
& Francis, 2022; Manassi et al., 2015). In this model,
recurrent processing segments the visual scene into
distinct objects represented in separate segmentation
layers. Crowding occurs when the target and flankers
are processed in the same layer; uncrowding occurs
when they are processed in different layers. Crucially,

the flanker preview gives the model sufficient time to
segment the vernier target separately, reducing crowding
strength. These findings challenge classic feedforward
models by demonstrating that visual perception is a
dynamic process fundamentally shaped by grouping
mechanisms that unfold over time.

General methods

Observers

Participants were paid students of the École
Polytechnique Fédérale de Lausanne (EPFL). All had
normal or corrected-to-normal vision, with a visual
acuity of 1.0 (corresponding to 20/20) or better, as
measured with the Freiburg Visual Acuity Test (Bach,
1996). Participants provided informed consent, were
informed of the general purpose of the experiment,
and were told that they could quit the experiment at
any time. There were 14 observers in Experiment 1
(9 females, Mage = 21.9, SD = 2.3), 10 in Experiment 2
(4 females, Mage = 21.4, SD = 1.3), 10 in Experiment
3 (4 females, Mage = 23.3, SD = 2.0), and 12 in
Experiment 4 (5 females, Mage = 23.0, SD = 2.8).
Participants were not involved in more than one
experiment. Participants showing exceptionally
unstable performance or excessive ceiling/floor effects
were excluded (Three from Experiment 1, three from
Experiment 2, two from Experiment 3, three from
Experiment 4; 11 in total). The experiments were
approved by the local ethics committee.

Apparatus and stimuli

Stimuli for Experiment 1 were presented on an
HP-1332A XY-display equipped with a P11 phosphor
and controlled by a custom-made 16-bit DA interface
with custom-made software. Experiments 2 to 4 were
carried out on an Asus VG248QE LCD monitor (1,920
× 1,080 pixels, 120 Hz). Stimulus programs were
implemented in MATLAB (R2019b; The MathWorks,
Natick, MA, USA) using the Psychophysics Toolbox
(Brainard, 1997). The stimuli were white (100 cd/m2)
on a black background (luminance below 0.3 cd/m2, as
measured with a Minolta Luminance meter LS-100).
The experimental room was dimly illuminated. Viewing
distance was 75 cm.

We determined vernier offset discrimination
thresholds for different flanker configurations. The
vernier target consisted of two lines that were randomly
offset to the left or right. Stimuli consisted of two
vertical 40′ (arcmin) long lines separated by a vertical
gap of 4′ and presented at an eccentricity of 9° (arcdeg)
to the right of a red fixation dot (8′ diameter). Observers

Downloaded from jov.arvojournals.org on 11/12/2025



Journal of Vision (2025) 25(12):16, 1–17 Morea, Herzog, Francis, & Manassi 3

Figure 1. Stimuli used in the experiments. The target (a) was composed of two vertical lines slightly offset either to the left or to the
right (vernier). The Lines consisted of two vertical lines on each side of the vernier (b). The Rectangles (c) contained the lines from the
Lines condition, and the Cubes (d) contained the rectangles from the Rectangles condition.

indicated the offset direction of the bottom line of
the vernier. Stimuli were moved to 6° eccentricity if
the participant could not perform the task (e.g., had
performance at chance for every condition besides
the unflanked vernier). Sixteen participants in total
performed the experiment at 6° eccentricity (one
for Experiment 1, four for Experiment 2, five for
Experiment 3, and six for Experiment 4). Eccentricity
refers to the center of the vernier stimulus. Flanker
configurations were placed symmetrically to the left
and right of the vernier stimulus. There were three
possible flanker configurations of increasing complexity
(Figure 1). Each more complex configuration is
obtained by adding but not omitting elements from the
simpler configurations. In the “Lines” configuration,
the vernier was flanked by two vertical lines (84′, the
same length as the vernier) spaced 46′ apart. In the
“Rectangles” configuration, rectangles were presented
to the left and right of the vernier (width = 117′, same
height as the lines). In the “Cubes” configuration,
perspective Cubes were presented to the left and right
of the vernier (same dimensions as Rectangles, angle
of oblique lines = 45°, length of oblique lines = 53′).
Cubes and Rectangles contained the lines from the
Lines condition, and the Cubes condition contained the
lines from the Rectangles condition.

Procedure

Observers were instructed to fixate a central fixation
dot during each trial. After stimulus presentation,
the screen remained blank for a maximum period of
3 s, during which the observer was required to make a
response by pressing one of two handheld push buttons.
The task was to indicate whether the bottom line of the
vernier was offset to the left or right, relative to the top
line of the vernier. Auditory feedback was provided
after incorrect or omitted responses. The vernier offset
was controlled through the adaptive staircase procedure
PEST (Taylor & Creelman, 1967), but thresholds (75%
correct criterion) were determined from the post hoc fit
of the psychometric function (cumulative Gaussian)
to the log-scaled data. In order to avoid extremely
large vernier offsets, we restricted the PEST procedure
to not exceed 1,600′′ (arcsec) (i.e., twice the starting
value of 800′′). The offset directions (left or right) were

randomized, but no more than four consecutive trials
could have the same direction. Each condition was
presented in separate blocks of 80 trials. All conditions
were measured twice (i.e., 160 trials) and randomized
individually for each observer. To compensate for
possible learning effects, the order of conditions was
reversed after each condition had been measured
once.

Model simulations

The same stimuli were presented to the LAMINART
model of visual perception, which previously explained
a variety of uncrowding effects (Francis et al., 2017;
Manassi et al., 2015). To make this study self-contained,
we summarize the key model properties that are
necessary for the current discussion. The model
emulates aspects of visual cortical processing, using
integrate-and-fire model neurons, which establishes
the time scale of visual processing in the model (and
determines how quickly visual information fades away
from the neural circuit). The model circuits combine
bottom-up information from a stimulus with top-down
control that selects and segments image information
in order to best achieve certain tasks. For the vernier
discrimination task, the top-down goal of the model is
to segment the visual representations of the vernier from
the flanking elements. In this way, the model can avoid
interference effects (crowding) that the flankers might
have on the templates used to evaluate the direction
of vernier offset based on the visual information in
the baseline segmentation layer. One template sums
neural activity across the spatial regions that indicate a
left-shifted template to produce a left-template score,
SL. Another template sums neural activity across the
spatial regions that indicate a right template to produce
a right-template score, SR. Consistent with many
theories of crowding, these templates are large enough
to cover the vernier stimulus and nearby flanking
elements. The model computes a contrast score for a
right-shifted vernier (all model stimuli were right-shifted
verniers):

C = SR − SL

100 + SR + SL
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Crowding occurs when the flankers contribute to
the templates, thereby reducing the relative difference
between the left and right templates. This contrast
calculation is performed for each 20-ms time step.
Model evidence is the sum of the contrast values
that maximized model performance (generally
summing values from 20 to 100 ms after vernier
onset). Larger model evidence values correspond
to better performance (e.g., smaller thresholds) on
a vernier discrimination task. Since our empirical
measurements estimate thresholds for performance, we
plot model evidence values with an inverted y-axis. If
the segmentation process can move the flanker elements
to a separate segmentation layer from the vernier, then
they hardly enter the model evidence calculation, which
will lead to good performance.

The simulations in Francis et al. (2017) heavily
depended on the formation of connections between
disparate elements (which roughly corresponded to
grouping), but these connections hardly matter for
the current stimuli because the flankers are almost all
fully connected. For this reason, we used an updated
version of the model (Kon & Francis, 2022) that
allows top-down control to prevent the formation of
connections. Most of the explanatory power of the
model for the current simulations comes from the
segmentation process. To simplify the simulations, the
model used a fixed location for the segmentation signals
that led to good segmentation when it was feasible
(e.g., the flankers are large enough to be selected and
separated from the vernier lines). Adding a bit of
noise to the location of the segmentation signal would
hardly make any difference for these stimuli (see Francis
et al., 2017). A more detailed explanation of the model
dynamics, along with examples of stimuli used in the
experiments, is provided below.

Results

Experiment 1

Previous studies have shown that crowding is
strongly determined by spatial grouping: When flanking
elements group together, the vernier is released from
crowding (i.e., uncrowding effect; Francis et al.,
2017; Manassi et al., 2012; Manassi et al., 2013). In
Experiment 1, we investigated the role of stimulus
duration in spatial grouping.

Methods

In Experiment 1, we investigated the temporal
dynamics of uncrowding for three different flanking
configurations (the same shown in Figure 1).

Participants discriminated the left or right offset of a
vernier either alone or flanked by Lines, Rectangles, or
Cubes for 20 or 160 ms of total stimulus duration.

Behavioral results

When vernier and flankers were presented for
160 ms, vernier discrimination thresholds increased
compared to the unflanked condition (Figure 2;
pairwise one-tailed t test with Bonferroni correction,
adjusted p values: vernier alone vs. vernier flanked by
Lines, 160 ms, t(13) = −8.22, d = 2.20, p < 0.001;
Rectangles, 160 ms, t(13) = −3.96, d = 1.06, p < 0.01;
Cubes, 160 ms, t(13) = −4.59, d = 1.23, p < 0.01).
We found a significant interaction between stimulus
duration and flanker type (two-way repeated-measures
analysis of variance [ANOVA]: F(2, 26) = 12.0, partial
η2 = 0.48, p < 0.001). Crowding was lower for the
Cubes or Rectangles conditions compared to Lines
(post hoc pairwise Bonferroni-corrected comparisons;
we report the adjusted p values): Lines 160 ms vs. Cubes
160 ms, t(51.8) = 4.81, d = 1.28, p < 0.001; Lines 160
ms vs. Rectangles 160 ms, t(51.8) = 4.04, d = 1.08, p
< 0.01; and Cubes 160 ms vs. Rectangles 160 ms, t(51.8)
= −0.79, d = 0.21, p = 1.0.

These results are in line with extensive literature on
uncrowding (Bornet et al., 2021; Bornet et al., 2021;
Choung et al., 2021; Choung et al., 2023; Francis et al.,
2017; Herzog, 2022; Herzog et al., 2015; Herzog &
Manassi, 2015; Jastrzębowska et al., 2021; Manassi
et al., 2012; Manassi et al., 2013; Manassi et al., 2015;
Manassi et al., 2016; Saarela et al., 2009; Saarela et al.,
2010; Sayim et al., 2010; Schwetlick, Manassi, Herzog,
& Francis, 2025; Tiurina et al., 2022).

Interestingly, when vernier and flankers were
presented for 20 ms, strong crowding occurred in
all conditions (Figure 2a; vernier alone vs. vernier
flanked by Lines: t(13) = −9.71, d = 2.59, p < 0.001;
Rectangles: t(13) = −8.77, d = 2.34, p < 0.001;
Cubes: t(13) = −10.47, d = 2.80, p < 0.001). We
found no significant difference in crowding strength
between Lines, Rectangles, and Cubes configurations
when presented for 20 ms (Lines 20 ms vs. Cubes 20
ms, (51.8) = −1.02, d = 0.27, p = 1.0; Lines 20 ms
vs. Rectangles 20 ms, t(51.8) = −1.72, d = 0.46, p =
1.0; Cubes 20 ms vs. Rectangles 20 ms, t(51.8) = −0.69,
d = 0.18, p = 1.0). We propose that grouping of the
flankers does not occur for a shorter stimulus duration,
and hence, crowding remains strong in all conditions.
For longer stimulus durations, there is enough time to
initiate grouping of the flankers away from the target,
and thus uncrowding occurs (20 ms vs. 160 ms; Cubes,
t(37.2) = 5.95, d = 1.59, p < 0.001; Rectangles, t(37.2)
= 5.86, d = 1.57, p < 0.001; Lines, t(37.2) = 0.40, d =
0.10, p = 1.0; see also Doerig, Schmittwilken, Sayim,
Manassi, & Herzog, 2020, Figure 3).
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Figure 2. Experiment 1: Temporal dynamics of uncrowding. Results from empirical data (a) and simulations from the model (b). Mean
vernier offset discrimination thresholds as a function of stimulus duration for the three flanker types: Lines, Rectangles, and Cubes.
The black dotted line indicates the threshold for an unflanked vernier displayed for 20 ms (extended through the entire graph as
reference). Error bars indicate the standard error of the mean. Straight lines on top of graph indicate the results of post hoc paired
t-tests between the two stimulus durations (20 and 160 ms), for each flanker type (different colors). When the vernier was flanked by
Lines (green line), thresholds remained at a high constant level at both stimulus durations. When the vernier was flanked by
Rectangles (red line) or Cubes (blue line), thresholds strongly decreased for a stimulus duration of 160 ms. The model’s simulations
reflect the pattern observed in the behavioral data (the y-axis is reversed since high model evidence corresponds to a low threshold).
Lines indicating performance for flanking Rectangles and Cubes overlap and have the same trend.

Model simulations

The LAMINART model qualitatively reproduces
our results (Figure 2b). To understand how these results
come about, Figure 3 shows the LAMINART model’s
response to the flanking Cubes when the stimulus is
presented for 160 ms. The model has two separate
segmentation layers, which we call Layer 0 and Layer
1. Each segmentation layer represents the oriented
contours of the stimulus image. Here, vertical contours
are indicated by red pixels, horizontal contours are
indicated by green pixels, and two diagonal orientations
are indicated by blue pixels. Each pixel color represents
a specific contour orientation for visualization purposes.
At 80 ms after stimulus presentation, most of the
contours are represented most strongly in Layer 0.
However, a dynamic transfer of information about the
flankers from Layer 0 to Layer 1 is ongoing because
of top-down selection signals (indicated by the yellow
circles on the stimulus). These selection signals spread
across the locations of connected contours and shift
the contours in Layer 0 to the same corresponding
pixel locations in Layer 1. This selection/segmentation
process is evident as the simulation time progresses,
and by around 160 ms, the contours corresponding
to the vernier are almost isolated in Layer 0, while
the contours corresponding to the flanker are almost
entirely represented in Layer 1. The neural circuits
that support the segmentation process are described
in Francis et al. (2017). A longer stimulus duration
allows the selection signal to spread along the borders

of the Rectangles and Cubes, identifying them as
separate objects and segregating them into different
layers. However, for very short-duration stimuli, the
selection/segmentation process does not have sufficient
time to segment the representations of the flankers and
the vernier, so crowding is strong.

When the segmentation has separated the
representation of the flankers from the representation
of the vernier, templates that calculate evidence for
a right-shifted versus a left-shifted vernier are quite
different, meaning the task is relatively easy (a small
shift is sufficient for good detection, so thresholds will
be small; see Figure 2).

The model behavior is quite different for the Lines
stimulus shown in Figure 4. The flanker lines are very
close to the vernier, so it is difficult for the selection
signals to cover only the flanking elements without also
covering some of the vernier. In the simulation shown
in Figure 4, the flanking Lines are not segmented, so
they interfere with the template calculations, meaning
the task is difficult (thresholds will be large). In other
simulations, the selection signals might cover both the
target and the flankers, in which case the contours for all
elements are transferred to Layer 1. This segmentation
does not help because the template calculations in
Layer 1 will suffer from the same kind of interference
(crowding; see Figure 2). A longer stimulus duration
does not bring any advantage in this case. So, the key
difference between the Cubes and Lines stimulus is
that the flankers in the Cubes condition provide a
larger target for the top-down selection signals. In
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Figure 3. Model simulations for the flanking Cubes condition. The top-down selection signals (yellow circles) spread across the
connected contours of the flankers and shift the flanker representation to Layer 1. The vernier is left behind in Layer 0, which makes it
easy to identify the vernier shift. A colored pixel indicates the presence of an oriented contour. The colors of the pixels (red for
vertical, green for horizontal, and blue for diagonals) are used for visualization purposes only and do not reflect differences in model
processing.

Figure 4. Model simulations for the flanking Lines condition. The top-down selection signals (yellow circles) miss the small line
flankers and do not promote segmentation of the vernier and flankers. Crowding makes it difficult to identify the vernier shift. A
colored pixel indicates the presence of an oriented contour. The colors of the pixels (red for vertical, green for horizontal, and blue for
diagonals) are used for visualization purposes only and do not reflect differences in model processing.
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Figure 5. Experiment 2: Uncrowding in time. Results from empirical data (a) and simulations from the model (b). Mean vernier offset
discrimination thresholds for preview/postview conditions for Cubes (in blue) and Lines (in green). The black dotted line indicates the
threshold for an unflanked vernier displayed for 20 ms (extended through the entire graph as reference). Colored dashed lines
indicate baseline crowding conditions for each flanker type, extended through the entire graph as reference. Error bars are standard
error of the mean. Asterisks indicate a significant difference with baseline (dashed lines, crowding condition of vernier flanked by
Cubes or lines for 20 ms) in post hoc paired t-tests. A preview of the Cubes induced a release from crowding (blue line). A preview of
the Lines did not change crowding strength (green line). The model’s simulations (b) reflect the pattern observed in the behavioral
data (the y-axis is reversed since high model evidence reflects good performance).

follow-up simulations, we explore the dynamics of the
selection/segmentation process and see that it provides
a consistent explanation of the empirical data.

Taken together, these results show that crowding
strength can be modulated by stimulus duration when
the flankers can be grouped (segmented) away from the
vernier. Hence, grouping the flankers away from the
target is a time-consuming process that does not occur
with very short stimulus durations.

Experiment 2

In Experiment 1, we showed that grouping requires
a minimum stimulus duration. With a 20-ms stimulus
duration, the vernier was equally crowded by Lines,
Rectangles, and Cubes. With a 160-ms stimulus
duration, the Rectangles and Cubes grouped away
from the target, releasing the vernier from crowding.
This result aligns with previous findings (Doerig et al.,
2020) and was well predicted by the LAMINART
model. As this grouping process is time-dependent, we
investigated whether a brief preview of the flankers
could initiate their grouping away from the target,
thereby reducing crowding for a vernier presented much
later.

Methods
In Experiment 2, we measured vernier offset

discrimination thresholds for a vernier flanked by either
Lines or Cubes, which was either preceded (preview)
or followed (postview) by a 120-ms interstimulus
interval (ISI) and then a 20-ms display containing
only the flankers (Figure 5). Due to the similarity
in performance between the Rectangles and Cubes
conditions (Figure 2), we only included Cubes in
the following experiments. We hypothesized that
uncrowding in time occurs when previewing flankers
with the potential for grouping (i.e., Cubes), whereas
crowding remains strong when previewing flanking
Lines that do not lead to uncrowding at longer stimulus
durations. We also hypothesized that a postview
condition (i.e., presenting Lines and Cubes after the
vernier) would not lead to uncrowding.

Behavioral results
As shown in Experiment 1, displaying the vernier

flanked by Lines or Cubes for 20 ms led to strong
crowding (pairwise one-tailed t-test with Bonferroni
correction: vernier alone vs. vernier flanked by
Lines: t(9) = −12.13, d = 3.83, p < 0.001, Cubes:
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t(9) = −9.98, d = 3.15, p < 0.001), and we found
a significant interaction between flanker type and
design condition (two-way repeated-measures ANOVA:
F(2, 18) = 25.26, partial η2 = 0.63, p < 0.001).
Giving a preview of the flanking Cubes reduced
crowding compared to displaying the vernier flanked
by Cubes for 20 ms (Figure 5a; post hoc pairwise
Bonferroni-corrected comparisons [we report the
adjusted p-values]: Cubes 20-ms duration vs. Cubes
preview, t(35.9) = 7.44, d = 2.35, p < 0.001). Notably,
the improvement in performance is comparable to
displaying the vernier and the flankers for longer
durations (see Figure 2a in Experiment 1), despite the
target being on the screen for only 20 ms. The preview of
the Lines did not reduce crowding strength (Figure 5a;
Lines 20-ms duration vs. Lines preview, t(35.9) =
1.62, d = 0.51, p = 1.0). Displaying the flankers after
the flanked target (postview condition) also did not
affect crowding strength (Figure 5a), regardless of
flanker type (Cubes 20-ms duration vs. Cubes postview,
t(35.9) = −0.37, d = 0.12, p = 1.0; Lines 20-ms
duration vs. Lines postview, t(35.9) = −1.09, d = 0.34,
p = 1.0).

Model simulations
The simulations from the LAMINART model align

with the behavioral data (Figure 5b). When the Cubes
are presented in isolation, the selection/segmentation
process begins. The contour representations persist
through the 120-ms ISI (Francis, Grossberg, &
Mingolla, 1994), so there is sufficient time for the model
to segment most of the contours of the Cubes. When
the vernier appears, it is represented in Layer 0 by itself,
thereby leading to uncrowding. The same segmentation
advantage does not happen for Lines because the
selection signals usually either cover the lines and the
space where the vernier will (eventually) appear or
do not cover the flanking Lines at all. Consequently,
the vernier and flanker representations remain in a
common segmentation layer, and crowding is strong.
The postview conditions provide no advantage for
the model because they do not enable segmentation
of the flanker and vernier representations. Instead,
the vernier representation largely fades away during
the ISI, and any subsequent segmentation of the
flankers has no impact on the vernier template
calculations.

Taken together, these results provide evidence for a
novel preview effect that, unlike previously reported
preview effects in the literature (Chung, 2016; Chung
& Patel, 2022; Greenwood, Sayim, & Cavanagh, 2014;
Huckauf & Heller, 2004; Scolari, Kohnen, Barton, &
Awh, 2007; Soo, Chakravarthi, & Andersen, 2018),
occurs only when flankers have the potential to be
grouped away from the target for longer stimulus
durations.

Experiment 3

Following the demonstration of this configuration-
specific preview effect (Figure 5), we explored its
temporal dynamics by investigating how stable the
effect would be for longer ISIs.

Methods
In Experiment 3, we measured vernier offset

discrimination thresholds by displaying the Cubes
alone, followed by a variable ISI, and then by the
display with Cubes and the vernier (Figure 6). We tested
ISIs ranging from 20 to 2,000 ms.

Behavioral results
There was a significant effect of ISI (one-way

repeated measures ANOVA: F(7, 64) = 4.03, partial
η2 = 0.31, p = 0.001). Providing a preview of the
flanking Cubes led to uncrowding for some ISIs up to
1,000 ms (Figure 6a, post hoc one-tailed pairwise t-tests
after false discovery rate [FDR] correction [we report
the adjusted p-values]: 20 ms, t(64) = 2.6, d = 0.82,
p = 0.03; 120 ms, t(64) = 6.8, d = 2.15, p < 0.001; 260
ms, t(64) = 2.3, d = 0.73, p = 0.04; 600 ms, t(64) = 2.0,
d = 0.63, p = 0.05; 1,000 ms, t(64) = 3.8, d = 1.20, p
< 0.01; 1,500 ms, t(64) = 1.4, d = 0.44, p = 0.12; 2,000
ms, t(64) = 0.3, d = 0.09, p = 0.39).

An observed empirical improvement at an ISI of
20 ms compared to the no-preview condition appears
noteworthy, considering its brevity, which would
typically not allow sufficient time for segmentation to
manifest, as evidenced in Experiment 1. This result
may be due to a flickering phenomenon: Crowding
decreases when the target “blinks” (disappears and then
reappears) from the display with the flankers for 20 ms,
or its onset is delayed by 210 ms with respect to the
flankers (Greenwood et al., 2014). Nevertheless, it is
important to note that a general flickering effect cannot
account for the whole body of results, given that the
release from crowding occurs for Cubes but not for
Lines (Figure 5). Hence, our preview effect is flankers
specific, and thus it cannot be due to a mere flickering
effect.

Model simulations
The model shows similar behavior (Pearson

correlation coefficient between model evidence and
behavioral thresholds is –0.83; Figure 6b), with
the preview effect giving small improvements in
performance for up to a 120-ms ISI. However,
the model does not account for uncrowding for
longer ISIs (i.e., 260 ms, 600 ms, 1,000 ms). When
presenting Cubes in isolation, they easily migrate
to their designated segmentation layer, thereby
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Figure 6. Experiment 3: The preview effect is long-lasting. Results from empirical data (a) and simulations from the model (b). Mean
vernier offset discrimination thresholds as a function of ISI duration. The black dotted line indicates the threshold for an unflanked
vernier displayed for 20 ms (extended through the entire graph as reference). The blue dashed line indicates the vernier flanked by
Cubes with a 20-ms stimulus duration. Error bars indicate the standard error of the mean. Asterisks on top of bars indicate a significant
difference with baseline (blue dashed line, crowding condition of vernier flanked by Cubes for 20 ms) in post hoc paired t-tests.
Crowding decreased for ISIs of up to 1,000 ms. The model simulations reflect the pattern observed in the behavioral data (the y-axis is
reversed since high model evidence corresponds to low thresholds), although the preview advantage only exists for shorter ISIs.

allowing the vernier to stand out more easily when
the second frame is presented. In human observers,
this process unfolds over a longer time scale than
that employed by the model. For ISIs over 120
ms, the representation of the segmented Cubes
fades and cannot be integrated with the frame of
Cubes and vernier, and model evidence is low. The
model, therefore, captures some aspects of, but
falls short of completely matching, the behavioral
data.

Experiment 4

To delve deeper into the underlying dynamics of
this uncrowding effect, we inserted an intermediate
frame of flankers in Experiment 4, between
the initial presentation of Cubes alone and the
subsequent presentation of the Cubes with the
vernier (Figure 7). Possible intermediate displays
were Cubes, Rectangles, Triangles, Central Square,

Scrambled Cubes, and Lines. If uncrowding occurs
due to grouping processes unfolding over time, we
hypothesized that inserting an intermediate frame
between the preview and the crowded stimuli would
lead to uncrowding depending on the nature of the
intermediate flankers. As Cubes exactly match the
preview stimuli, Rectangles preserve most of their
structural features, and Triangles form closed-contour
Gestalt objects, we predicted that the flanker grouping
process should propagate through these types of
frames and ultimately allow the vernier in the final
frame to be uncrowded. The Central-Rectangle
condition was more exploratory: Although it also
qualifies as a coherent Gestalt, its single, centrally
located shape (rather than two symmetric flankers
beside the vernier) differs strikingly from the preview
configuration. This contrast allowed us to probe
whether the visual system favors spatial similarity (i.e.,
matching lines in the same positions) or the more
abstract principle of perceptual grouping. By contrast,
line segments and Scrambled Cubes—both lacking
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Figure 7. Experiment 4: The preview effect is gated by grouping processes occurring over time. Results from empirical data (a) and
simulations from the model (b). Mean vernier offset discrimination thresholds as a function of the type of flanker displayed in the
intermediate frame. The black dotted line indicates the threshold for an unflanked vernier displayed for 20 ms (extended through the
entire graph as reference). The blue dashed line indicates the baseline crowding condition: vernier flanked by Cubes, 20-ms stimulus
duration. Error bars indicate the standard error of the mean. Asterisks on top of bars indicate a significant difference from the
baseline (blue dashed line). The model’s simulations mostly reflect the pattern observed in the behavioral data (the y-axis is reversed
since high model evidence reflects good performance).

an inherently groupable structure—were expected
to crowd.

Methods
In addition to the initial frame containing the Cubes

alone, we presented the three flanking configurations
used in previous designs (Lines, Rectangles, and
Cubes; Figure 1), along with three novel ones:
Scrambled Cubes, Triangles, and Central-Rectangle
(Figure 7). Scrambled Cubes were obtained by shuffling
the lines from the Cubes condition. The Triangles’ inner
sides were 84′, while the oblique sides were 124.3′ long.
The Central-Rectangle had the same height as the other
flankers (84′) and a width of 46′ (as the spacing between
the Lines).

In each trial, we presented the Cubes alone for
20 ms, followed by an ISI of 120 ms, one of the
aforementioned flankers alone for 20 ms, another ISI

of 120 ms, and then the vernier flanked by the Cubes
for 20 ms.

Behavioral results
In the behavioral data (Figure 7a), there was a

significant effect of flanker type (one-way repeated-
measures ANOVA: F(6, 66) = 11.33, partial η2 =
0.51, p < 0.001). As expected, crowding decreased
when presenting Cubes (post hoc pairwise comparisons
with FDR correction [we report the adjusted p-values]:
Cubes t(11) = 6.43, d = 1.86, p < 0.001) or Rectangles
t(11) = 11.46, d = 3.31, p < 0.001) as intermediate
frames, since they share the same global characteristics.
Following the introduction of intermediate
presentations of good Gestalt configurations, such
as Triangles (t(11) = 3.46, d = 1.0, p = 0.02) and a
Central-Rectangle (t(11) = 3.11, d = 0.89, p = 0.02), we
still found uncrowding. This last result is particularly
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Cub20 Cubes Rectangles Triangles Central-Rect Scrambled Lines

Cub20 — 6.43 −11.46 −3.46 −3.11 −2.60 −1.60
Cubes <0.001 — −0.29 1.85 2.12 2.98 4.70
Rectangles <0.001 0.82 — 3.13 3.76 3.75 −5.86
Triangles 0.02 0.14 0.02 — −0.75 −0.89 −2.06
Central-Rect 0.02 0.10 0.01 0.52 — −0.20 −1.78
Scrambled 0.05 0.03 0.01 0.46 0.84 — −1.57
Lines 0.18 <0.01 <0.001 0.10 0.14 0.18 —

Table 1. Results of the post hoc pairwise comparisons of Experiment 4. The p-values, FDR-corrected (lower triangle), and test statistics
t(11) (upper triangle) are shown for each stimulus combination. Abbreviations in the table: Cub20 = Cubes displayed with the vernier
for 20 ms; other conditions had flankers displayed in the intermediate frame.

compelling because it demonstrates that the visual
system prioritizes perceptual grouping over local feature
similarity. Importantly, uncrowding did not occur
with Scrambled Cubes (t(11) = 2.60, d = 0.75, p =
0.05) or Lines (t(11) = 1.60, d = 0.46, p = 0.18) as
intermediate frames, indicating that these distractors
disrupt the grouping-in-time process. Comparisons
from the post hoc analysis are shown in Table 1.
Taken together, these results showed that the preview
effect occurred only with good Gestalt configurations
as intermediate frames, providing evidence that the
preview effect is gated by grouping processes over
time.

Model simulations
Figure 7b shows that the model simulations explain

most of the empirical data (Pearson correlation
coefficient between model evidence and behavioral
thresholds is –0.81). The model’s explanation is much
the same as for the results in Figure 5b. The selection
signal partially spreads across the contours of the Cubes
during the original presentation and the subsequent
ISI. At the presentation of the intermediate flankers,
there is pixel overlap between the selected contours
and the contours of the new flanker. As a result, the
selection process continues with the contours of the
new flanker elements. This process does not occur for
the Lines as intermediate flankers because the selection
signal tends to be placed far from the location of the
lines (to avoid selection of the subsequent vernier).
Oftentimes, the selection signal has not spread to the
location of the lines, and so the selection signal gets
lost during the ISI after the intermediate flankers.
The same kind of effect happens for the Scrambled
Cubes because the innermost lines of that flanker are
largely disconnected from the farther away scrambled
lines. For both of these intermediate flankers, some
trials do produce a preview effect because the selection
signal is placed close enough to the innermost lines
that the selection signal spreads to them during the
first ISI.

The main qualitative discrepancy between the
model and the empirical data is for the central
rectangle intermediate flanker condition (Figure 7,
Central-Rectangle). The model treats this stimulus
much like the intermediate Lines condition, but the
top and bottom of the central rectangle cause some
additional crowding that makes the model’s predicted
performance a bit worse than the Lines condition. In
contrast, the empirical data show a modest preview
effect.

Another discrepancy between the model and the
behavioral data is represented by the Triangles. In
the behavioral data (Figure 7a, Table 1), Triangles
are significantly different from Rectangles (t(11) =
3.13, d = 0.90, p = 0.02) but not from Cubes (t(11)
= 1.85, d = 0.53, p = 0.14). In the model, the three
conditions give comparable uncrowding. Although
the nonsignificant difference between Triangles and
Cubes in the behavioral data may simply reflect limited
statistical power, the model treats these two conditions
as nearly identical because the triangle’s apex extends
to the far vertical edge of the preview cube’s front
face. During the preview, selection signals propagate
along that contour; when the triangle appears, its
tip seamlessly integrates into the existing activation.
The same occurs for both Cubes and Rectangles, but
not for the Central-Rectangle or for Lines. In the
Scrambled Cubes condition, the inner lines remain
too disconnected from the preview cube’s boundary to
capture any residual signal.

General discussion

Our results provide evidence for a novel preview effect
in visual crowding: A very brief flankers presentation
(20 ms) can lead to uncrowding of subsequently
presented objects. This effect (Figure 5) occurs only if
the flankers have the potential to group (Experiment
3), it occurs for up to 1 second, and it is governed by
time-dependent grouping processes (Experiments 2–4).
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For 20-ms presentations, crowding is strong for
all flanker configurations. (Experiment 1; Doerig
et al., 2020). For Cubes, uncrowding requires stimulus
durations of at least 160 ms. For these longer stimulus
durations, we propose that the brain has sufficient time
to group the flankers away from the vernier target,
therefore reducing crowding. The same result can
be obtained with a preview of the flankers, even if
presented for just 20 ms (Experiment 2). We propose
that displaying the flanking Cubes alone (i.e., without
the vernier target) initiates processing of the Cubes,
which continues during the ISI. The full representations
can then be used to segment the vernier away. Hence,
spatiotemporal grouping is key in crowding (Bornet
et al., 2021; Bornet et al., 2021; Choung et al., 2021;
Choung et al., 2023; Francis et al., 2017; Herzog,
2022b; Herzog et al., 2015; Herzog & Manassi, 2015;
Jastrzębowska et al., 2021; Manassi et al., 2012;
Manassi et al., 2013; Manassi et al., 2015; Manassi
et al., 2016; Saarela et al., 2009; Saarela et al., 2010;
Sayim et al., 2010; Schwetlick et al., 2025; Tiurina
et al., 2022). Notably, the total stimulus duration of
the Cubes is 20 ms for the preview and 20 ms for their
presentation together (i.e., 40 ms altogether), which
is much shorter than the critical duration of 160 ms.
Hence, what matters is not the stimulus duration
per se but the processing time. Our results challenge
the idea that the initial stages of visual processing
in a feedforward fashion are most essential for
perceiving stimuli under crowding conditions. Instead,
crowding seems to be a dynamic process fundamentally
shaped by grouping mechanisms that unfold over
time.

A large part of our empirical results is well explained
by the recurrent segmentation processes in the
LAMINARTmodel (Francis et al., 2017; Manassi et al.,
2015). Uncrowding in time occurs when the flanking
elements are segmented away from the target vernier.
Recurrent connections allow the efficient spreading
of selection signals across layers and ultimately
segmentation of the different objects (see also Wallis
et al., 2019). The model’s segmentation process plays
the role of grouping the flanking elements.

Our preview effect led to uncrowding of the
subsequently presented crowded vernier, even if
presented 1 s before (Experiment 3). Thus, their
representations must be held in visual memory
for up to a second, similarly to the time scales of
iconic memory (Phillips, 1974; Sperling, 1960). It is
important to mention that 1 s is a relatively long time
in visual processing, especially considering that object
recognition can occur much faster (i.e., even within
300 ms; Kirchner & Thorpe, 2006; Rousselet, Macé, &
Fabre-Thorpe, 2004; Thorpe et al., 1996; VanRullen
& Thorpe, 2001). We suggest that in easy recognition
tasks, the detection of features may be sufficient for
discrimination, such as distinguishing animals from

cars. This is similar to deep neural networks, which
perform at the human level in animal detection tasks
based on features like fur. However, neural networks
struggle when texture information is not available and
proper segmentation is required (Ballester & Araujo,
2016; Brendel & Bethge, 2019; Geirhos et al., 2018).

Object segmentation is challenging because the
number of possible groupings increases exponentially
with the amount of information, making it
computationally infeasible even with relatively simple
elements (Comaniciu, Meer, & Member, 2002;
Felzenszwalb & Huttenlocher, 2004; Ren & Malik,
2003; Shi & Malik, 2000). Feedback connections might
be crucial for achieving such computations (Chicherov,
Plomp, & Herzog, 2014; Jastrzębowska et al., 2021).
In light of this, we suggest that the brain seizes any
opportunity to group elements when possible. For the
flanking Cubes, grouping is feasible since they can be
identified as individual objects. The preview facilitates
recognition and segmentation of the Cubes, while the
Lines are always grouped together with the vernier.
Uncrowding does not occur when the flankers are
shown after the vernier (postview condition; Figure 5)
because, during short presentations, only one object can
be identified.

As long as there is no disruptive information
between the Cubes and the vernier, the grouping
process continues (Experiment 4). Interestingly,
these segmentation processes extend over several
hundred milliseconds, suggesting the involvement of
feedback connections from higher visual areas. Recent
neuroimaging studies in primates (Kim & Pasupathy,
2024) support our hypothesis by highlighting the role
of global flanker configuration in crowding.

Our results differ from standard priming effects,
where providing a cue about the target for brief
durations before the trial leads to increased access to
its representation at that spatial location, resulting in
faster or more accurate responses (Hilchey, Leber, &
Pratt, 2018; Janiszewski & Wyer, 2014; Kristjánsson,
Wang, & Nakayama, 2002; Kristjánsson & Campana,
2010; Kristjánsson & Driver, 2008; Theeuwes, 2013;
Wilkinson, Wilson, & Ellemberg, 1997; Yeshurun &
Rashal, 2010). This standard priming effect cannot
explain our results, as there is no target uncertainty in
our case. The spatial location and main characteristics
of the target are constant across trials, so priming
should also occur in the flanking Lines conditions.
Similarly, our results cannot be explained by standard
preview effects in visual crowding. Previous studies have
shown that presenting the flankers before a crowded
stimulus can result in reduced crowding (Chung, 2016;
Chung & Patel, 2022; Greenwood et al., 2014; Harrison
& Bex, 2014; Huckauf & Heller, 2004; Scolari et al.,
2007; Soo et al., 2018). However, in our case, the preview
effect is strictly dependent on the characteristics of the
flankers (Experiments 2–4). Uncrowding in time occurs
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only if the flankers can potentially group away from
the target for longer durations (Rectangles and Cubes;
Experiment 1). Flankers that do not group away from
the target for longer durations, such as Lines, do not
provide any advantage for subsequent crowded stimuli.
Hence, our preview effect reveals a very different type
of mechanism than previous research.

Our results build on recent findings investigating
temporal crowding (Harrison, Retell, Remington, &
Mattingley, 2013; Hochmitz, Abu-Akel, & Yeshurun,
2024; Sahar & Yeshurun, 2023; Tkacz-Domb &
Yeshurun, 2017, 2021; Yeshurun, Rashal, & Tkacz-
Domb, 2015; see also Sayim et al., 2014), where the
identification of a target object is impaired when
distracting objects precede and follow it. Notably,
while previous studies found that target recognition
is impaired in the range of 500 ms (Hochmitz et al.,
2024; Sahar & Yeshurun, 2023; Tkacz-Domb &
Yeshurun, 2017; Tkacz-Domb & Yeshurun, 2021),
our preview effect demonstrates that crowding can
be reduced with flanker previews presented up to 1
s before the target. This apparent discrepancy could
be explained by the difference in tasks and stimuli
(oriented stimuli in Hochmitz et al., 2024; Sahar &
Yeshurun, 2023; Tkacz-Domb & Yeshurun, 2021, or
letters in Tkacz-Domb & Yeshurun, 2017; Yeshurun
et al., 2015; Yeshurun & Rashal, 2010, vs. the vernier
offset discrimination task in our study). Importantly,
our paradigm involves spatial and temporal crowding
components simultaneously, as flankers are positioned
adjacent to the target in space as well as in time.
Previous studies focused on purely temporal crowding
without spatial crowding (Hochmitz et al., 2024; Sahar
& Yeshurun, 2023; Tkacz-Domb & Yeshurun, 2017;
Tkacz-Domb & Yeshurun, 2021; Yeshurun et al., 2015).

Finally, previous results show that crowding is not a
fundamental bottleneck in vision (Herzog & Manassi,
2015; Manassi & Whitney, 2018). Our results take
one step further in this respect, showing that target
information is not irretrievably lost in the early stages of
visual processing, as predicted by pooling mechanisms
(Balas, Nakano, & Rosenholtz, 2009; Freeman &
Simoncelli, 2011; Greenwood, Bex, & Dakin, 2009;
Keshvari & Rosenholtz, 2016; Parkes, Lund, Angelucci,
Solomon, & Morgan, 2001; Pelli, 2008; Rosenholtz,
Yu, & Keshvari, 2019; Wilkinson et al., 1997). Target
information loss under visual crowding conditions can
be prevented, depending also on the temporal context
(i.e., stimulus duration and time interval between
preview and crowded stimulus).

Conclusions

Our study sheds light on the intricate dynamics
of crowding and uncrowding, revealing the

important role of spatiotemporal grouping processes.
Grouping of flankers requires a minimum stimulus
duration to occur and can be initiated even with
a 20-ms preview of the flankers. This preview
effect, unlike standard priming effects, extends
over large temporal distances, is dependent on the
flankers’ configuration, and is gated by grouping
mechanisms. Contrary to standard feedforward
models of vision, our results are well explained by
the LAMINART model, which implements recurrent,
time-consuming mechanisms for segmenting visual
scenes.

Keywords: visual crowding, temporal dynamics,
perceptual grouping, neural network models,
segmentation
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