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When crowding of crowding leads to uncrowding
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In object recognition, features are thought to be
processed in a hierarchical fashion from low-level
analysis (edges and lines) to complex figural processing
(shapes and objects). Here, we show that figural
processing determines low-level processing. Vernier
offset discrimination strongly deteriorated when we
embedded a vernier in a square. This is a classic
crowding effect. Surprisingly, crowding almost
disappeared when additional squares were added. We
propose that figural interactions between the squares
precede low-level suppression of the vernier by the
single square, contrary to hierarchical models of object
recognition.

In object recognition, features are thought to be
processed in a hierarchical, feedforward fashion in
which low-level feature analysis, e.g., of edges and lines,
precedes the analysis of complex features, such as
shapes and objects (e.g., DiCarlo, Zoccolan, & Rust,
2012; Hubel & Wiesel, 1959, 1962; Riesenhuber &
Poggio, 1999; Thorpe, Fize, & Marlot, 1996). For
example, the processing of a square presupposes the
analysis of its constituting four lines (Figure 1).

In crowding, the perception of a target strongly
deteriorates when flanked by neighboring elements.
Crowding is often explained by pooling or substitution
models, which are well in the spirit of the hierarchical,
feedforward model of object recognition. In pooling
models, neurons in higher visual areas with larger
receptive fields pool information from lower-level
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neurons with smaller receptive fields (Greenwood, Bex,
& Dakin, 2010; Parkes, Lund, Angelucci, Solomon, &
Morgan, 2001; Pelli, Palomares, & Majaj, 2004;
Wilkinson, Wilson, & Ellemberg, 1997). Because of
pooling, features of the target and the flankers are
integrated, and, thus, feature identification is lost. In
substitution models, because of positional uncertainty
(Huckauf & Heller, 2002; Strasburger, Harvey, &
Rentschler, 1991) or limited attentional resolution
(Strasburger, 2005), features of the target and flankers
are mislocalized or not “accessible” by attention (He,
Cavanagh, & Intriligator, 1996).

A prediction of all of these models is that, when
adding more flankers, crowding increases because more
noise is pooled or more elements can be confused.
However, this is not always the case (Manassi, Sayim,
& Herzog, 2012; Wolford & Chambers, 1983). For
example, in a previous contribution, we determined
vernier offset discrimination with different flanker
configurations (Figure 2). In the first experiment,
crowding was strong when the flankers had the same
length as the vernier (Figure 2a). Increasing or
decreasing the length of the flankers led to a decrease in
crowding compared to the previous condition (Figure
2b and c). Pooling and substitution models can explain
the improvement in performance with the short
flankers (Figure 2a and b) but fail to explain the change
with long flankers because long flankers increase the
amount of irrelevant information (Figure 2a and c). In
a second experiment, we showed that a Good Gestalt
plays a crucial role in crowding. When the vernier was
flanked by two single lines, crowding increased
compared to the unflanked condition (Figure 2d).
When the two lines were extended to a rectangle,
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Figure 1. Hierarchical, feedforward visual processing. Stimuli are processed in a series of visual areas. V1 neurons are most sensitive to
low-level features, such as edges and lines. In higher visual areas, like V4 and IT, receptive fields are larger, and neurons are sensitive
to complex features, such as shapes and objects. Responses of high-level neurons are fully determined by the neural firing of lower-
level neurons. For example, the neural firing to a square is determined by the neural firing for two vertical and two horizontal lines.

crowding decreased (Figure 2d and e). Keeping
constant the “low-level energy” of the stimulus,
crossing the horizontal lines of the rectangles increased

(Malania, Herzog, & Westheimer, 2007; Sayim, West-
heimer, & Herzog, 2008, 2010).
We proposed that crowding is strongly determined

by grouping. When the vernier is grouped with the
flankers, thresholds increase, and crowding is strong
(Figure 2a, d, and f). When the vernier is perceived as
standing out from the flankers’ configuration, thresh-
olds decrease and crowding is weak (Figure 2b, ¢, and
e). Subjective ratings further supported our hypothesis.
For example, we asked subjects to rate how much the

crowding compared to the previous condition (Figure
2e and f). Hence, figural aspects strongly matter in
crowding (see also Livne & Sagi, 2007). Also increasing
flanker size can improve performance (Levi & Carney,
2009; Saarela, Sayim, Westheimer, & Herzog, 2009).
Very similar results were also found in foveal vision
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Figure 2. Crowding and grouping (data replotted from Manassi et al., 2012). Stimuli were presented at 3.88° of eccentricity (a through
f). Observers indicated whether a vernier was offset to the left or to the right. We determined the offset size for which 75% correct
responses occurred (threshold). Results are plotted in terms of threshold elevation compared to a single vernier condition without
flankers; i.e., thresholds in the flanking conditions are divided by the threshold of the unflanked condition (dashed lines). A vernier
flanked by eight lines of the same length on each side yields a strong threshold elevation (a) compared to the unflanked condition.
When the vernier is flanked by eight shorter lines, performance improves (b), and crowding is almost absent for long lines (c). A

vernier flanked by two lines of the same length yields a strong threshold elevation (d) compared to the unflanked threshold. When
the vernier is flanked by rectangles, performance improves (e). When crossing the horizontal lines of the rectangles, performance
deteriorates compared to the previous condition (f).
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vernier stands out from the flankers, and the results
showed a good qualitative match to the psychophysical
results (see Malania et al., 2007; Manassi et al., 2012).

The mechanisms of grouping in crowding are
largely unknown. It may, for example, be the case that
first textures (arrays of long flankers) and figures
(squares) are processed, and crowding occurs subse-
quently by pooling or substitution within the textures
and figures. Here, we show a more complex case, in
which crowding on a figural level (between shapes)
determines crowding on the more basic level (vernier
and square). Contrary to classical models of object
recognition, we propose that figural processing deter-
mines low-level processing.

Apparatus

In four experiments, stimuli were presented on a
Philips 201B4 CRT monitor driven by a standard
accelerated graphics card. Screen resolution was set to
1024 by 768 pixels at a 100-Hz refresh rate. The white
point of the monitor was adjusted to D65. The color
space was linearized by applying individual gamma
correction to each color channel. A Minolta CA-210
display color analyzer was used. Target and flankers
consisted of white lines presented on a black back-
ground. The luminance of the stimuli was 80 cd/m?.
Viewing distance was 75 cm.

Stimuli and task

In the square/diamond task (Figure 3 upper panel,
Figure 6), observers were asked to indicate whether the
central rectangle/diamond was wider along the hori-
zontal or the vertical axis. In the vernier task (Figure 3
lower panel, Figure 4-5), observers were asked to
indicate the offset direction of the vernier. The vernier
stimulus consisted of two vertical 40-arcmin-long lines
separated by a vertical gap of 4 arcmin. Left and right
offsets were balanced within each block. Squares and
diamonds were made up of four lines that were 2° long.
Flanker configurations were centered on the central
shape/vernier and were symmetrical in the horizontal
dimension. The distance between each flanking shape
was 0.5°. Each configuration was presented at an
eccentricity of 9° to the right of a fixation point.
Eccentricity refers to the center of the target location
(shape or vernier). To reduce target position uncer-
tainty, we added two vertical lines (40-arcmin long),
150 arcmin above and below the center of the target.
Target and flankers were presented simultaneously for

Manassi, Sayim, & Herzog 3

150 ms. The starting width of the shape was 16.66
arcmin. The starting vernier offset was 16.66 arcmin.

In Experiment 3, we increased the number of
squares. To obtain a strong crowding effect, we
adjusted the square size and the spacing between
squares for each observer individually. We started
with a square size of 2° and an intersquare spacing of
0.5°. If the vernier offset threshold was not at least
seven times the threshold of the unflanked vernier, we
reduced square size and spacing by 5%. Four
observers showed strong interference from the begin-
ning; for four observers, we used 80% and for two
observers 75%.

Procedure

Observers were instructed to fixate on the fixation
point during the trial. After each response, the screen
remained blank for a maximum period of 3 s, during
which the observer was required to make a response by
pressing one of two push buttons. The screen was blank
for 500 ms between each response and the next trial. An
adaptive staircase procedure (Taylor & Creelman,
1967) was used to determine the square width or vernier
offset for which observers reached 75% correct
responses. Thresholds were determined after fitting a
cumulative Gaussian to the data using probit and
likelihood analyses. In order to avoid extremely large
vernier offsets, we restricted the PEST procedure to
33.32 arcmin (i.e., twice the starting value). Each
condition was presented in separate blocks of 80 trials.
All conditions were measured twice (i.e., 160 trials) and
randomized individually for each observer. To com-
pensate for possible learning effects, the order of
conditions was reversed after each condition had been
measured once. Auditory feedback was provided after
incorrect or omitted responses.

Statistics

Threshold data were analyzed with a repeated
measures ANOVA. Tukey’s post-hoc tests were used
for pairwise comparisons for all flanker configurations.
All comparisons reported in the Results section were
significant.

Observers

Participants were paid students of the Ecole Poly-
technique Fédérale de Lausanne (EPFL). All had
normal or corrected-to-normal vision with a visual
acuity of 1.0 (corresponding to 20/20) or better in at
least one eye, measured with the Freiburg Visual Acuity
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Figure 3. Upper panel: Observers were asked to discriminate whether a rectangle was wider along the horizontal or vertical axis (“x”).
We determined the threshold width for which 75% correct responses were obtained. When the rectangle was flanked by three
squares on each side, thresholds strongly increased compared to when presented alone. This is a classic crowding effect. Lower panel:
(a) Observers were asked to discriminate the vernier offset direction (left vs. right). We determined the offset size for which 75%
correct responses occurred (dashed line). (b) Thresholds increased when the vernier was embedded in a square. (c) Compared to the
single-square condition, thresholds decreased and crowding almost vanished when the square was flanked by additional squares.
Hence, crowding of crowding led to uncrowding. We propose that inhibition between the squares led to weaker neural
representations of the central square and, thus, to less inhibition on the vernier. (d) Thresholds increased when rotating the flanking
squares by 45°, creating six diamonds. We suggest that, because of the different shapes, the central square and the neighboring
diamond representations do not inhibit each other. (e through g) Thresholds increased compared to the unflanked condition when
the vernier was embedded in a diamond (e). Thresholds decreased when the diamond was flanked by other diamonds (f). Thresholds
increased when rotating the neighboring diamonds by 45° (g). Error bars indicate the standard error of the mean of nine observers.

Threshold (arcsec)

Test (Bach, 1996). Observers were told that they could

quit the experiment at any time they wished. Nine

observers (four females) performed Experiment 1

(Figure 3), and 10 observers (four females) performed Experiment 1

Experiment 2 (Figure 5). Ten observers (four females)

participated in Experiment 3 (Figure 4), and five We presented a rectangle at 9° of eccentricity.
observers (one female) participated in Experiment 4 Observers were asked to discriminate whether the
(Figure 6). rectangle was wider along the horizontal or vertical axis
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Figure 4. (a) Observers were asked to discriminate the vernier offset direction (left vs. right). (b) Thresholds increased when the
vernier was embedded in a square. (c through e) Thresholds gradually decreased when increasing the number of flanking squares.

(Figure 3, upper panel). Thresholds were around 300 crowding effect (Figure 3a and b, lower panel). We then

arcseconds. Thresholds strongly increased when the combined the two conditions; i.e., we presented the
rectangle was flanked by six squares (Figure 3, upper vernier within a central square that was flanked by
panel). This is a classic crowding effect. Next, we three squares on each side. Classic models of crowding
presented a vernier within the square and asked predict that the vernier should be severely crowded
observers to discriminate the vernier offset direction because it is, first, crowded by the square and, second,
(left or right). Threshold increased compared to when by the other squares. However, the opposite is the case.
the vernier was presented alone—another classic Crowding almost completely vanished; i.e., perfor-
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Figure 5. For 10 new observers, thresholds increased, as in the last experiment, when the vernier was embedded in a square (a and
b). Thresholds decreased when six additional squares were presented (b and c). When only the vertical lines of the neighbouring
squares were presented, thresholds were on the same level as with one square (b compared to d). Hence, the flanking vertical lines
themselves do not lead to uncrowding. Also, when only vertical lines were presented, thresholds remained on a high level (e). Hence,
interactions between the flanking lines of the central square and the flanking lines of the neighboring squares cannot explain

uncrowding.
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Figure 6. Observers were asked to discriminate whether a rectangle (a through c) or a diamond (d through f) was wider along the
horizontal or vertical axis. (b) Thresholds increased compared to the single-rectangle condition when the rectangle was flanked by
other six squares. (c) Thresholds decreased when rotating the flanking squares by 45°, creating six diamonds. (d through f) Same
pattern in inverse conditions. Observers were asked to discriminate whether the central diamond (d) was wider along the horizontal
or vertical axis. (e) Thresholds increased compared to the single-diamond condition in which the diamonds were flanked by six other
diamonds. (f) Thresholds decreased when rotating the neighboring diamonds by 45°, creating six squares.

mance of the “doubly crowded” vernier was almost as
good as when presented alone (compare Figure 3b and
¢). Crowding of crowding led to uncrowding.

We propose that the uncrowding effect can be best
explained by figural interactions. In the multisquare
condition (Figure 3c), the seven squares crowd each
other because of figural identity (shape similarity).
Because of this crowding, the vernier representation is
little or not affected by crowding of the central square
and, thus, crowding diminishes.

According to this hypothesis, we expect strong
crowding when figural similarity changes. To test this
prediction, we rotated the neighboring squares by 45°,
creating six diamonds (Figure 3d). As expected,
thresholds strongly increased. We suggest there is
weaker inhibition between squares and diamonds
because of their dissimilar shapes even though low-level
properties, such as pixel energy, are the same. The
central square representation is not inhibited and, thus,
inhibition on the vernier is strong (Figure 3d). Similar
effects were observed when the vernier was embedded
in a diamond. Thresholds increased compared to the
vernier-alone condition (compare Figure 3a and e).
When the vernier embedded in the diamond was
flanked by three other diamonds on each side,
thresholds decreased (compare Figure 3e and f). When
the neighboring diamonds were rotated by 45°, creating
six squares, thresholds increased compared to the

condition in which only diamonds were presented
(compare Figure 3f and g).

Experiment 2

Next, we show that “uncrowding” occurs gradually,
depending on the number of squares (Figure 4). As
before, we embedded the vernier in a square, and
thresholds increased (Figure 4b). We then increased the
number of flanking squares from one to seven.
Threshold gradually decreased as more squares were
presented (Figure 4c through e).

Experiment 3

Can low-level interactions between the lines making
up the squares and the vernier explain the “uncrowd-
ing” effect? We first repeated the two main conditions
for 10 new observers (Figure 5). As before, thresholds
increased when the vernier was embedded in a square,
and thresholds decreased when adding six further
squares (compare Figure 5a and c). Next, we presented
only the vertical lines making up the flanking squares.
Still, crowding was strong, with thresholds as high as in
the single-square condition (compare Figure 5b and d).
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Similarly, by presenting only the vertical lines of all
squares, thresholds remained high, excluding the
possibility that line-line rather than square—square
interactions explained the uncrowding effect (compare
Figure 5c and e).

Experiment 4

Finally, we show that vernier crowding and crowd-
ing of the central shape show similar characteristics. As
in the first experiment, observers indicated whether the
central square was wider along the horizontal or
vertical axis (Figure 6). Thresholds were around 400
arcseconds (Figure 6a). When the rectangle was flanked
by 2 x 3 squares, thresholds increased compared to the
single rectangle condition (compare Figure 6a and b).
When rotating the flanking squares by 45°, creating six
diamonds, thresholds decreased, and crowding ceased
almost completely (compare Figure 6b and c). We
found a similar pattern for the inverse conditions.
Observers indicated whether the diamond was wider
along the horizontal or vertical axis. For one diamond,
thresholds were on the same level as in the single-
rectangle condition (compare Figure 6a and d). When
the diamond was flanked by 2 x 3 diamonds,
thresholds strongly increased compared to the single-
diamond condition (compare Figure 6d and e¢). When
rotating the flanking diamonds by 45°, creating six
squares, thresholds strongly decreased compared to the
condition in which only diamonds were presented
(compare Figure 6e and f). Uncrowding is best
explained by the differences in shape (Figure 6¢ and f;
Kooi, Toet, Tripathy, & Levi, 1994).

Crowding occurs when a target is neighbored by
flankers. Most models explain crowding by local
interactions with only nearby flankers deteriorating
performance. For this reason, most crowding experi-
ments have used only single flankers next to the target
(e.g., Levi, Hariharan, & Klein, 2002; Levi, Klein, &
Hariharan, 2002; Pelli et al., 2004; Strasburger et al.,
1991; Toet & Levi, 1992). Bouma’s law proposes that
crowding occurs only in a window with a size of about
half of the eccentricity of target presentation, which is
roughly in accordance with the cortical magnification
factor (Bouma, 1970; Pelli et al., 2004; Pelli & Tillman,
2008). Within this window, features of the target and
the flankers are thought to be pooled (Parkes et al.,
2001; Wilkinson et al., 1997), substituted (Huckauf &
Heller, 2002; Strasburger et al., 1991), or impossible to
“access” by attention (He et al., 1996). All models
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predict that crowding increases when the number of
flankers increases within the critical window because
more irrelevant features are pooled or are substituted.
Flankers outside Bouma’s window do not affect
performance.

However, increasing the number or the size of
flankers can, surprisingly, strongly improve perfor-
mance (Levi & Carney, 2009; Malania et al., 2007;
Manassi et al., 2012; Saarela et al., 2009; Sayim et al.,
2010; Wolford & Chambers, 1983; see also Figure 3).
Performance can even approach the performance level
in the unflanked, target-alone condition (Figure 3c).
These results cannot easily be explained by “local
models.” We propose that grouping is necessary in
crowding. Without grouping of target and flankers,
there is no crowding (except for strong differences
between target and flankers in contrast or luminance).
However, grouping is not sufficient for crowding. For
example, when target and flankers are spatially very
distant, target and flankers may still group, but there is
no crowding. Grouping can occur by many cues as the
Gestaltists have shown. For example, the long flankers
in Figure 2 group by similarity, making up two textures
to the left and right of the vernier. Because of the size
difference, the vernier is not grouped with the textures
and maintains its “identity.” It is an independent
object. In this condition, performance is far superior
compared to the condition in which flankers have the
same length as the vernier and all elements make up
one texture. Single-line flankers can lose their “crowd-
ing power” also when becoming part of good Gestalts,
such as the squares in Figure 2e. The rationale is the
same as before. Because of the different Gestalts, the
vernier is not grouped with the squares, and, hence,
crowding is weak compared to when the single flankers
are presented in isolation. Grouping plays a key role
also in the current experiments. We suggest that the
vernier groups with the central square because of the
Gestalt principle of common region (Palmer, 1992).
When the central square is flanked by neighboring
squares, all squares group by shape similarity, which
releases the grouping by common region, leading to
ungrouping of the vernier from the central square. We
like to mention that, as with many other paradigms, it
is not easy to predict performance and crowding
strength when Gestalt cues are combined.

Even though target-flanker grouping is crucial in
crowding, grouping does not explain why performance
deteriorates. Grouping is “neutral” to this question. An
inhibitory or otherwise “suppressive” mechanism is
needed to explain the deleterious effects of crowding.
One option is that, within groups, elements are pooled,
substituted, or cannot be “accessed” by attention.
Other mechanisms might be related to pooling by
summary statistics (Balas, Nakano, & Rosenholtz,
2009).
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Whereas the current experiments do not address the
issue of “suppressive mechanisms”, they provide new
insights about the interactive processing of target and
flankers. Our results show that different types of
crowding, related to different levels of processing, can
strongly interact with each other. When the central
square was flanked by neighboring squares, vernier
offset discrimination strongly improved compared to
the single-square condition (Figure 3b and c). With
flanking diamonds, there was strong crowding. Hence,
“global” crowding within the multisquare array
strongly interacted with the rather local central-square—
vernier crowding. Crowding—crowding interactions are
only one potential mechanism. Most likely, in our
previous experiments, the long lines did not crowd each
other strongly, still leading to ungrouping of the vernier
(Figure 3c). Hence, our results show that crowding can
occur on many levels and that these levels can mutually
interact with each other in agreement with previous
findings showing that crowding can occur on many
levels in the visual hierarchy (Louie, Bressler, &
Whitney, 2007; Wallace & Tjan, 2011; Whitney & Levi,
2011). Our results add to these results that, surpris-
ingly, higher-level crowding can undo lower-level
crowding.

Our uncrowding effects occur in a much larger
window than predicted by Bouma’s law (Bouma, 1970).
In Figure 4, the vernier target was presented at 9° of
eccentricity. Hence, Bouma’s window is 9/2 =4.5°. Still,
crowding strongly decreased when the third and fourth
outer squares were added at 5° and 7.5° from the target,
respectively.

Our results have strong implications for vision in
general. In most simple models, visual information
processing proceeds from low-level (edges and lines) to
high-level (objects and shapes) analysis. If information
is lost at the early stages, it is irretrievably lost.
However, it seems that, in our experiments, the
constituting lines of the squares are processed first.
However, target vernier processing is not affected at
this stage. Second, the squares are computed from the
lines. Third, the square representations inhibit each
other. This inhibition occurs on a figural level, i.e.,
between neurons sensitive to squares, similarly to
neurons, tuned to the same orientation at the early
stages of vision. When the central and flanking shapes
are dissimilar (central square and flanking diamonds;
Figure 3d), there is no or only weak inhibition. Finally,
when the central square is inhibited, the vernier is
disinhibited (multisquare condition vs. flanking dia-
monds condition, Figure 3c and d). Hence, inhibition
between the squares leads to disinhibition of the
vernier. This scenario is supported by the fact that
performance improved as more squares were added
(Figure 4) and that different flanking shapes (squares
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vs. diamonds) did not lead to uncrowding of the vernier
even though pixel energy was similar.

In an alternative scenario, the whole stimulus
configuration is analyzed first, and different objects (or
groups) are computed without any inhibition mecha-
nism involved. In the multisquare condition, the vernier
stands out from the structure of identical shapes and
may be processed potentially in an independent
“channel” (Figure 3¢ and f). In the crowded conditions,
the vernier is part of one structure together with the
central square, processed within one channel (Figure 3d
and g).

Regardless of which scenario is true, the strong
effects of uncrowding question the intuitive idea that
there is a simple link between basic neural processes,
such as pooling of nearby neural signals, and percep-
tion. The human brain does not stereotypically
integrate nearby features across the visual field. There
is the intermediate step of grouping. Hence, before we
can understand crowding, we need to understand how
elements group. In this sense, we propose that grouping
precedes pooling (Parkes et al., 2001; Wilkinson et al.,
1997), substitution (Huckauf & Heller, 2002; Stras-
burger et al., 1991), inhibition, or any suppression
mechanism involved in crowding. Unfortunately,
grouping is not a well-defined issue, and its mechanisms
remain elusive since the days of the Gestaltists.

Our results are in agreement with other paradigms in
which wholes determine the appearance of parts (e.g.,
Hochstein & Ahissar, 2002; Pomerantz & Portillo,
2011; Weisstein & Harris, 1974; Wertheimer, 1923). We
found that larger masks improve performance also in
pattern and metacontrast masking (Duangudom,
Francis, & Herzog, 2007; Herzog & Fahle, 2002). In
surround suppression, contrast discrimination of Ga-
bors improved when the target Gabor ungrouped from
the surround (Saarela & Herzog, 2009). Hence,
grouping seems to be a crucial, intermediate process in
many visual paradigms.

Keywords: crowding, grouping, contextual modula-
tion, vernier acuity, hierarchical processing
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